Texture Segmentation of Jacquard Fabric Using Wavelet-Domain Markov Model

2012 ◽  
Vol 468-471 ◽  
pp. 2720-2723
Author(s):  
Yang Zhang ◽  
You Cheng Tong ◽  
Jun Zhou Yao

To improve the accuracy and efficiency of fabric design CAD, a wavelet-domain Markov model to image texture segmentation from a natural framework for intergrating both local and global information of jacquard fabric image behavior, together with contextual information.Firstly the Daubechies wavelet and tree-structure is selected, then the approach decomposes the low frequency part of the jacquard fabric image. Secondly within the theoretical framework of Markov random field, we construct the grey field distribution model and label field prior model with finite Gaussian mixture algorithm and multi-level logistic algorithm respectively. The experiments for almost 30 warp knitting jacquard fabric images show that this approach is a feasible way for jacquard fabric, and it supplies a theoretical platform for subsequent research.

Author(s):  
ZHIWU LIAO ◽  
Y. Y. TANG

This paper presents a new framework for signal denoising based on wavelet-domain hidden Markov models (HMMs). The new framework enables us to concisely model the statistical dependencies and non-Gaussian statistics encountered in real-world signals, and enables us to get a more reliable and local model using blocks. Wavelet-domain HMMs are designed with the intrinsic properties of wavelet transform and provide powerful yet tractable probabilistic signal models. In this paper, we propose a novel wavelet domain HMM using blocks to strike a delicate balance between improving spatial adaptability of contextual HMM (CHMM) and modeling a more reliable HMM. Each wavelet coefficient is modeled as a Gaussian mixture model, and the dependencies among wavelet coefficients in each subband are described by a context structure, then the structure is modified by blocks which are connected areas in a scale conditioned on the same context. Before denoising a signal, efficient Expectation Maximization (EM) algorithms are developed for fitting the HMMs to observational signal data. Parameters of trained HMM are used to modify wavelet coefficients according to the rule of minimizing the mean squared error (MSE) of the signal. Then, reverse wavelet transformation is utilized to modified wavelet coefficients. Finally, experimental results are given. The results show that block hidden Markov model (BHMM) is a powerful yet simple tool in signal denoising.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 388
Author(s):  
Riccardo De Blasis ◽  
Giovanni Batista Masala ◽  
Filippo Petroni

The energy produced by a wind farm in a given location and its associated income depends both on the wind characteristics in that location—i.e., speed and direction—and the dynamics of the electricity spot price. Because of the evidence of cross-correlations between wind speed, direction and price series and their lagged series, we aim to assess the income of a hypothetical wind farm located in central Italy when all interactions are considered. To model these cross and auto-correlations efficiently, we apply a high-order multivariate Markov model which includes dependencies from each time series and from a certain level of past values. Besides this, we used the Raftery Mixture Transition Distribution model (MTD) to reduce the number of parameters to get a more parsimonious model. Using data from the MERRA-2 project and from the electricity market in Italy, we estimate the model parameters and validate them through a Monte Carlo simulation. The results show that the simulated income faithfully reproduces the empirical income and that the multivariate model also closely reproduces the cross-correlations between the variables. Therefore, the model can be used to predict the income generated by a wind farm.


Author(s):  
Li Zhao ◽  
Laurence Rilett ◽  
Mm Shakiul Haque

This paper develops a methodology for simultaneously modeling lane-changing and car-following behavior of automated vehicles on freeways. Naturalistic driving data from the Safety Pilot Model Deployment (SPMD) program are used. First, a framework to process the SPMD data is proposed using various data analytics techniques including data fusion, data mining, and machine learning. Second, pairs of automated host vehicle and their corresponding front vehicle are identified along with their lane-change and car-following relationship data. Using these data, a lane-changing-based car-following (LCCF) model, which explicitly considers lane-change and car-following behavior simultaneously, is developed. The LCCF model is based on Gaussian-mixture-based hidden Markov model theory and is disaggregated into two processes: LCCF association and LCCF dissociation. These categories are based on the result of the lane change. The overall goal is to predict a driver’s lane-change intention using the LCCF model. Results show that the model can predict the lane-change event in the order of 0.6 to 1.3 s before the moment of the vehicle body across the lane boundary. In addition, the execution times of lane-change maneuvers average between 0.55 and 0.86 s. The LCCF model allows the intention time and execution time of driver’s lane-change behavior to be forecast, which will help to develop better advanced driver assistance systems for vehicle controls with respect to lane-change and car-following warning functions.


2021 ◽  
Vol 11 (7) ◽  
pp. 3138
Author(s):  
Mingchi Zhang ◽  
Xuemin Chen ◽  
Wei Li

In this paper, a deep neural network hidden Markov model (DNN-HMM) is proposed to detect pipeline leakage location. A long pipeline is divided into several sections and the leakage occurs in different section that is defined as different state of hidden Markov model (HMM). The hybrid HMM, i.e., DNN-HMM, consists of a deep neural network (DNN) with multiple layers to exploit the non-linear data. The DNN is initialized by using a deep belief network (DBN). The DBN is a pre-trained model built by stacking top-down restricted Boltzmann machines (RBM) that compute the emission probabilities for the HMM instead of Gaussian mixture model (GMM). Two comparative studies based on different numbers of states using Gaussian mixture model-hidden Markov model (GMM-HMM) and DNN-HMM are performed. The accuracy of the testing performance between detected state sequence and actual state sequence is measured by micro F1 score. The micro F1 score approaches 0.94 for GMM-HMM method and it is close to 0.95 for DNN-HMM method when the pipeline is divided into three sections. In the experiment that divides the pipeline as five sections, the micro F1 score for GMM-HMM is 0.69, while it approaches 0.96 with DNN-HMM method. The results demonstrate that the DNN-HMM can learn a better model of non-linear data and achieve better performance compared to GMM-HMM method.


2021 ◽  
Vol 11 (11) ◽  
pp. 5213
Author(s):  
Chin-Shiuh Shieh ◽  
Wan-Wei Lin ◽  
Thanh-Tuan Nguyen ◽  
Chi-Hong Chen ◽  
Mong-Fong Horng ◽  
...  

DDoS (Distributed Denial of Service) attacks have become a pressing threat to the security and integrity of computer networks and information systems, which are indispensable infrastructures of modern times. The detection of DDoS attacks is a challenging issue before any mitigation measures can be taken. ML/DL (Machine Learning/Deep Learning) has been applied to the detection of DDoS attacks with satisfactory achievement. However, full-scale success is still beyond reach due to an inherent problem with ML/DL-based systems—the so-called Open Set Recognition (OSR) problem. This is a problem where an ML/DL-based system fails to deal with new instances not drawn from the distribution model of the training data. This problem is particularly profound in detecting DDoS attacks since DDoS attacks’ technology keeps evolving and has changing traffic characteristics. This study investigates the impact of the OSR problem on the detection of DDoS attacks. In response to this problem, we propose a new DDoS detection framework featuring Bi-Directional Long Short-Term Memory (BI-LSTM), a Gaussian Mixture Model (GMM), and incremental learning. Unknown traffic captured by the GMM are subject to discrimination and labeling by traffic engineers, and then fed back to the framework as additional training samples. Using the data sets CIC-IDS2017 and CIC-DDoS2019 for training, testing, and evaluation, experiment results show that the proposed BI-LSTM-GMM can achieve recall, precision, and accuracy up to 94%. Experiments reveal that the proposed framework can be a promising solution to the detection of unknown DDoS attacks.


Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 2058 ◽  
Author(s):  
Larissa Rolim ◽  
Francisco de Souza Filho

Improved water resource management relies on accurate analyses of the past dynamics of hydrological variables. The presence of low-frequency structures in hydrologic time series is an important feature. It can modify the probability of extreme events occurring in different time scales, which makes the risk associated with extreme events dynamic, changing from one decade to another. This article proposes a methodology capable of dynamically detecting and predicting low-frequency streamflow (16–32 years), which presented significance in the wavelet power spectrum. The Standardized Runoff Index (SRI), the Pruned Exact Linear Time (PELT) algorithm, the breaks for additive seasonal and trend (BFAST) method, and the hidden Markov model (HMM) were used to identify the shifts in low frequency. The HMM was also used to forecast the low frequency. As part of the results, the regime shifts detected by the BFAST approach are not entirely consistent with results from the other methods. A common shift occurs in the mid-1980s and can be attributed to the construction of the reservoir. Climate variability modulates the streamflow low-frequency variability, and anthropogenic activities and climate change can modify this modulation. The identification of shifts reveals the impact of low frequency in the streamflow time series, showing that the low-frequency variability conditions the flows of a given year.


Sign in / Sign up

Export Citation Format

Share Document