Coding Schemes for Heterogeneous Communication Links Using Channel Bundling

Author(s):  
Vanessa Eichhorn ◽  
Maciej Mühleisen ◽  
Andreas Timm-Giel
2021 ◽  
Vol 4 (2) ◽  
pp. 1-8
Author(s):  
Shurooq M. Abdulkhudhur ◽  
Abdulkareem A. Kadhim

Huge data rates have been provided by 5G wireless communication systems using millimeter wave (mmWave) band that have frequencies ranging from 30 to 300 GHz.  mmWave provides much wider bandwidth than the existing 4G band.  The 5G network deals with massive number of devices.  This presents many challenges including capacity, end to end delay, data rate, and very large number of connections.  In this paper, the main task is to apply network coding to 5G mmWave communication system to increase the throughput of the communication links.  Simple packet-based network coding schemes using butterfly network topology are simulated.  The two network coding schemes considered here are Physical Layer Network Coding (PLNC) and Network Layer Network Coding (NLNC).   Models of Additive White Gaussian Noise (AWGN) and mmWave indoor fading channels are considered in the work using Quadrature Phase Shift Keying (QPSK) modulation. The results of the tests showed that the use of both NLNC and PLNC improved throughput in comparison to uncoded system.  Using PLNC increased the Bit Error Rate (BER) and the Packet Error Rate (PER), while NLNC scheme showed almost identical error performance to uncoded system over mmWave fading channel.  The results show that network coding improved throughput when compared.


2016 ◽  
Vol 3 (4) ◽  
pp. 480-493 ◽  
Author(s):  
Kaikai Chi ◽  
Yi-hua Zhu ◽  
Yanjun Li ◽  
Daqiang Zhang ◽  
Victor C. M. Leung

2020 ◽  
Vol 79 (2) ◽  
pp. 129-141
Author(s):  
M. E. Sanyaolu ◽  
Oluropo F. Dairo ◽  
A. A. Willoughby ◽  
L. B. Kolawole

2013 ◽  
Vol 8 (2) ◽  
pp. 26-31
Author(s):  
R. M. J. Priya ◽  
◽  
S Gayathri ◽  
C. Lakshmipriya ◽  
M. Arunkumar ◽  
...  

Author(s):  
I. Juwiler ◽  
I. Bronfman ◽  
N. Blaunstein

Introduction: This article is based on the recent research work in the field of two subjects: signal data parameters in fiber optic communication links, and dispersive properties of optical signals caused by non-homogeneous material phenomena and multimode propagation of optical signals in such kinds of wired links.Purpose: Studying multimode dispersion by analyzing the propagation of guiding optical waves along a fiber optic cable with various refractive index profiles of the inner optical cable (core) relative to the outer cladding, as well as dispersion properties of a fiber optic cable due to inhomogeneous nature of the cladding along the cable, for two types of signal code sequences transmitted via the cable: return-to-zero and non-return-to-zero ones.Methods: Dispersion properties of multimode propagation inside a fiber optic cable are analyzed with an advanced 3D model of optical wave propagation in a given guiding structure. The effects of multimodal dispersion and material dispersion causing the optical signal delay spread along the cable were investigated analytically and numerically.Results: Time dispersion properties were obtained and graphically illustrated for two kinds of fiber optic structures with different refractive index profiles. The dispersion was caused by multimode (e.g. multi-ray) propagation and by the inhomogeneous nature of the material along the cable. Their effect on the capacity and spectral efficiency of a data signal stream passing through such a guiding optical structure is illustrated for arbitrary refractive indices of the inner (core) and outer (cladding) elements of the optical cable. A new methodology is introduced for finding and evaluating the effects of time dispersion of optical signals propagating in fiber optic structures of various kinds. An algorithm is proposed for estimating the spectral efficiency loss measured in bits per second per Hertz per each kilometer along the cable, for arbitrary presentation of the code signals in the data stream, non-return-to zero or return-to-zero ones. All practical tests are illustrated by MATLAB utility.


Sign in / Sign up

Export Citation Format

Share Document