scholarly journals ‘Part’ly First Among Equals: Semantic Part-Based Benchmarking for State-of-the-Art Object Recognition Systems

Author(s):  
Ravi Kiran Sarvadevabhatla ◽  
Shanthakumar Venkatraman ◽  
R. Venkatesh Babu
Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4668
Author(s):  
Gregor Koporec ◽  
Andrej Košir ◽  
Aleš Leonardis ◽  
Janez Perš

This work examines the differences between a human and a machine in object recognition tasks. The machine is useful as much as the output classification labels are correct and match the dataset-provided labels. However, very often a discrepancy occurs because the dataset label is different than the one expected by a human. To correct this, the concept of the target user population is introduced. The paper presents a complete methodology for either adapting the output of a pre-trained, state-of-the-art object classification algorithm to the target population or inferring a proper, user-friendly categorization from the target population. The process is called ‘user population re-targeting’. The methodology includes a set of specially designed population tests, which provide crucial data about the categorization that the target population prefers. The transformation between the dataset-bound categorization and the new, population-specific categorization is called the ‘Cognitive Relevance Transform’. The results of the experiments on the well-known datasets have shown that the target population preferred such a transformed categorization by a large margin, that the performance of human observers is probably better than previously thought, and that the outcome of re-targeting may be difficult to predict without actual tests on the target population.


Author(s):  
Manjunath K. E. ◽  
Srinivasa Raghavan K. M. ◽  
K. Sreenivasa Rao ◽  
Dinesh Babu Jayagopi ◽  
V. Ramasubramanian

In this study, we evaluate and compare two different approaches for multilingual phone recognition in code-switched and non-code-switched scenarios. First approach is a front-end Language Identification (LID)-switched to a monolingual phone recognizer (LID-Mono), trained individually on each of the languages present in multilingual dataset. In the second approach, a common multilingual phone-set derived from the International Phonetic Alphabet (IPA) transcription of the multilingual dataset is used to develop a Multilingual Phone Recognition System (Multi-PRS). The bilingual code-switching experiments are conducted using Kannada and Urdu languages. In the first approach, LID is performed using the state-of-the-art i-vectors. Both monolingual and multilingual phone recognition systems are trained using Deep Neural Networks. The performance of LID-Mono and Multi-PRS approaches are compared and analysed in detail. It is found that the performance of Multi-PRS approach is superior compared to more conventional LID-Mono approach in both code-switched and non-code-switched scenarios. For code-switched speech, the effect of length of segments (that are used to perform LID) on the performance of LID-Mono system is studied by varying the window size from 500 ms to 5.0 s, and full utterance. The LID-Mono approach heavily depends on the accuracy of the LID system and the LID errors cannot be recovered. But, the Multi-PRS system by virtue of not having to do a front-end LID switching and designed based on the common multilingual phone-set derived from several languages, is not constrained by the accuracy of the LID system, and hence performs effectively on code-switched and non-code-switched speech, offering low Phone Error Rates than the LID-Mono system.


2021 ◽  
Author(s):  
Da-Ren Chen ◽  
Wei-Min Chiu

Abstract Machine learning techniques have been used to increase detection accuracy of cracks in road surfaces. Most studies failed to consider variable illumination conditions on the target of interest (ToI), and only focus on detecting the presence or absence of road cracks. This paper proposes a new road crack detection method, IlumiCrack, which integrates Gaussian mixture models (GMM) and object detection CNN models. This work provides the following contributions: 1) For the first time, a large-scale road crack image dataset with a range of illumination conditions (e.g., day and night) is prepared using a dashcam. 2) Based on GMM, experimental evaluations on 2 to 4 levels of brightness are conducted for optimal classification. 3) the IlumiCrack framework is used to integrate state-of-the-art object detecting methods with CNN to classify the road crack images into eight types with high accuracy. Experimental results show that IlumiCrack outperforms the state-of-the-art R-CNN object detection frameworks.


Author(s):  
Hongyuan Zhu ◽  
Shijian Lu ◽  
Jianfei Cai ◽  
Guangqing Lee

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Jiang Lin ◽  
Yi Yumei ◽  
Zhang Maosheng ◽  
Chen Defeng ◽  
Wang Chao ◽  
...  

In speaker recognition systems, feature extraction is a challenging task under environment noise conditions. To improve the robustness of the feature, we proposed a multiscale chaotic feature for speaker recognition. We use a multiresolution analysis technique to capture more finer information on different speakers in the frequency domain. Then, we extracted the speech chaotic characteristics based on the nonlinear dynamic model, which helps to improve the discrimination of features. Finally, we use a GMM-UBM model to develop a speaker recognition system. Our experimental results verified its good performance. Under clean speech and noise speech conditions, the ERR value of our method is reduced by 13.94% and 26.5% compared with the state-of-the-art method, respectively.


2020 ◽  
Vol 7 ◽  
Author(s):  
James Garforth ◽  
Barbara Webb

Forests present one of the most challenging environments for computer vision due to traits, such as complex texture, rapidly changing lighting, and high dynamicity. Loop closure by place recognition is a crucial part of successfully deploying robotic systems to map forests for the purpose of automating conservation. Modern CNN-based place recognition systems like NetVLAD have reported promising results, but the datasets used to train and test them are primarily of urban scenes. In this paper, we investigate how well NetVLAD generalizes to forest environments and find that it out performs state of the art loop closure approaches. Finally, integrating NetVLAD with ORBSLAM2 and evaluating on a novel forest data set, we find that, although suitable locations for loop closure can be identified, the SLAM system is unable to resolve matched places with feature correspondences. We discuss additional considerations to be addressed in future to deal with this challenging problem.


Sign in / Sign up

Export Citation Format

Share Document