In Silico Analysis of Haemodynamics in Patient-Specific Left Atria with Different Appendage Morphologies

Author(s):  
Andy L. Olivares ◽  
Etelvino Silva ◽  
Marta Nuñez-Garcia ◽  
Constantine Butakoff ◽  
Damián Sánchez-Quintana ◽  
...  
2021 ◽  
Author(s):  
Deeann Wallis ◽  
Andre Leier ◽  
Marc Moore ◽  
Michael Daniel ◽  
Hui Liu ◽  
...  

Abstract We investigated the feasibility of utilizing an exon skipping approach as a genotype-dependent therapeutic for neurofibromatosis type 1 (NF1) by determining which NF1 exons might be skipped while maintaining neurofibromin function. Human neurofibromin is well-known as a GTPase activating protein (GAP), but outside of its GAP-related domain (GRD), it is unclear how critical other regions are for function. Initial in silico analysis predicted exons that can be skipped with minimal loss of neurofibromin function. Utilizing a novel Nf1 cDNA system, we performed a functional screen to determine the effects of exon skipping on in vitro neurofibromin expression and GRD function. Loss of single exons 12, 17, 25, 41, 47, or 52 maintained significant GRD function in at least two Ras activity assays. Exons 18/19, 20 and 28 are critical for GRD function; deletion of exons 20, 41, or 47 led to significantly lower levels of neurofibromin. As suggested by in silico analysis, skipping of exons 17 or 52 resulted in both the highest neurofibromin levels and the greatest suppression of Ras activity. Assessment of NF1 patient databases indicates that pathogenic variants resulting in deletion or skipping of exons 17, 25, and 52 have not been reported; and truncating pathogenic variants in each exon account for ~0.91, 0.94, and 0.25% of unrelated NF1 cases, respectively. Hence, we designed antisense phosphodiamitate morpholino oligos (PMOs) to skip exon 17 and evaluated them in human cell lines that we generated via CRISPR/Cas9 with a patient-specific truncating pathogenic variant, c.1885G>A. We down-selected oligos that efficiently caused skipping of exon 17 and restored NF1 expression and function. Further, homozygous deletion of exon 17 in a novel mouse model is compatible with viable and grossly healthy animals with normal lifespan and no tumor development, providing proof-of-concept that exon 17 is not essential for murine neurofibromin function. Mild phenotypes observed include abnormal nesting behavior and lymphoid hyperplasia with increased numbers of both B- and T-cells. Hence, exon skipping should be further investigated as a therapeutic approach for NF1 patients with treatment of individuals with pathogenic variants in exon 17.


2020 ◽  
Vol 47 (6) ◽  
pp. 398-408
Author(s):  
Sonam Tulsyan ◽  
Showket Hussain ◽  
Balraj Mittal ◽  
Sundeep Singh Saluja ◽  
Pranay Tanwar ◽  
...  

2020 ◽  
Vol 27 (38) ◽  
pp. 6523-6535 ◽  
Author(s):  
Antreas Afantitis ◽  
Andreas Tsoumanis ◽  
Georgia Melagraki

Drug discovery as well as (nano)material design projects demand the in silico analysis of large datasets of compounds with their corresponding properties/activities, as well as the retrieval and virtual screening of more structures in an effort to identify new potent hits. This is a demanding procedure for which various tools must be combined with different input and output formats. To automate the data analysis required we have developed the necessary tools to facilitate a variety of important tasks to construct workflows that will simplify the handling, processing and modeling of cheminformatics data and will provide time and cost efficient solutions, reproducible and easier to maintain. We therefore develop and present a toolbox of >25 processing modules, Enalos+ nodes, that provide very useful operations within KNIME platform for users interested in the nanoinformatics and cheminformatics analysis of chemical and biological data. With a user-friendly interface, Enalos+ Nodes provide a broad range of important functionalities including data mining and retrieval from large available databases and tools for robust and predictive model development and validation. Enalos+ Nodes are available through KNIME as add-ins and offer valuable tools for extracting useful information and analyzing experimental and virtual screening results in a chem- or nano- informatics framework. On top of that, in an effort to: (i) allow big data analysis through Enalos+ KNIME nodes, (ii) accelerate time demanding computations performed within Enalos+ KNIME nodes and (iii) propose new time and cost efficient nodes integrated within Enalos+ toolbox we have investigated and verified the advantage of GPU calculations within the Enalos+ nodes. Demonstration data sets, tutorial and educational videos allow the user to easily apprehend the functions of the nodes that can be applied for in silico analysis of data.


2013 ◽  
Vol 9 (4) ◽  
pp. 608-616 ◽  
Author(s):  
Zaheer Ul-Haq ◽  
Saman Usmani ◽  
Uzma Mahmood ◽  
Mariya al-Rashida ◽  
Ghulam Abbas

2019 ◽  
Vol 13 (2) ◽  
pp. 159-170 ◽  
Author(s):  
Vishal Ahuja ◽  
Aashima Sharma ◽  
Ranju Kumari Rathour ◽  
Vaishali Sharma ◽  
Nidhi Rana ◽  
...  

Background: Lignocellulosic residues generated by various anthropogenic activities can be a potential raw material for many commercial products such as biofuels, organic acids and nutraceuticals including xylitol. Xylitol is a low-calorie nutritive sweetener for diabetic patients. Microbial production of xylitol can be helpful in overcoming the drawbacks of traditional chemical production process and lowring cost of production. Objective: Designing efficient production process needs the characterization of required enzyme/s. Hence current work was focused on in-vitro and in-silico characterization of xylose reductase from Emericella nidulans. Methods: Xylose reductase from one of the hyper-producer isolates, Emericella nidulans Xlt-11 was used for in-vitro characterization. For in-silico characterization, XR sequence (Accession No: Q5BGA7) was used. Results: Xylose reductase from various microorganisms has been studied but the quest for better enzymes, their stability at higher temperature and pH still continues. Xylose reductase from Emericella nidulans Xlt-11 was found NADH dependent and utilizes xylose as its sole substrate for xylitol production. In comparison to whole cells, enzyme exhibited higher enzyme activity at lower cofactor concentration and could tolerate higher substrate concentration. Thermal deactivation profile showed that whole cell catalysts were more stable than enzyme at higher temperature. In-silico analysis of XR sequence from Emericella nidulans (Accession No: Q5BGA7) suggested that the structure was dominated by random coiling. Enzyme sequences have conserved active site with net negative charge and PI value in acidic pH range. Conclusion: Current investigation supported the enzyme’s specific application i.e. bioconversion of xylose to xylitol due to its higher selectivity. In-silico analysis may provide significant structural and physiological information for modifications and improved stability.


Sign in / Sign up

Export Citation Format

Share Document