scholarly journals Time-Dependent Behavior Prediction, Serviceability and Sustainability Problems for High-Performance Concrete Bridges

Author(s):  
Banti A. Gedam ◽  
N. M. Bhandari ◽  
Akhil Upadhyay
2013 ◽  
Vol 705 ◽  
pp. 75-80 ◽  
Author(s):  
Andina Sprince ◽  
Aleksandrs Korjakins ◽  
Leonids Pakrastinsh

This research deals with experimentally studied time-dependent deformations of polyvinyl alcohol (PVA) fiber reinforced high performance concrete (HPFRC). The creep in compression and crack propagation of the new concrete compositions were determined. Several kind of concrete mixes adding microsilica and nanosilica have been made. For each composition cylinders with dimensions 190x47mm and Compact Tension (CT) specimens with dimensions 150x150x12mm were prepared. Concrete specimens were tested in a controlled constant temperature and with a constant level of moisture. Creep specimens were put into a creep lever test stand and subjected to a uniform, constant compressive load but CT specimens were subjected to a tension load. Deformations and crack mouth opening displacements were measured with extensometers. The compression strength and modulus of elasticity also were determined. The results have shown that nanosilica dont have significant influence on the high performance fiber reinforced concrete time-dependent behavior.


1998 ◽  
Vol 1624 (1) ◽  
pp. 132-139
Author(s):  
Mary Lou Ralls ◽  
Ramon L. Carrasquillo ◽  
Ned H. Burns

High-performance concrete (HPC) bridges can be cost-effective both initially and in the long term, provided the design and construction optimize the improved performance characteristics of HPC. Using the high-strength characteristic of HPC can reduce the required number and size of beams. Using the improved durability characteristics of HPC can reduce maintenance requirements and extend the service life. Practical guidelines help design and construction engineers implement HPC in bridges.


2016 ◽  
Vol 711 ◽  
pp. 1027-1034 ◽  
Author(s):  
Adriano Reggia ◽  
Sara Sgobba ◽  
Fabio Macobatti ◽  
Cristina Zanotti ◽  
Fausto Minelli ◽  
...  

After more than fifty years from the opening of the largely discussed “Autostrada del Sole” Highway in 1964, the infrastructure system in Italy appears marked by the passing of time, similarly to what observed in several other countries worldwide. The great heterogeneity of the Italian landscape has determined a great variety of construction types, such as large span concrete bridges over the northern rivers and large arch concrete bridges over the valleys of the central region. Increment of vehicle traffic and new seismic regulations are setting new requirements to adapt the existing infrastructure, which should be otherwise replaced. Moreover, reinforced concrete (RC) aging and deterioration have led to structural and material degradation, including severe cracking and corrosion. Specialized materials such as High Performance Concrete (HPC) could represent a viable convenient solution for repairing, strengthening and retrofitting of RC structures as both structural capacity and durability can be refurbished. However, alongside high mechanical performance, HPC is characterized by a high cracking sensitivity at very early age, due to its high stiffness and shrinkage. Restrained shrinkage cracking, particularly significant in repaired structures where the existing concrete generates a considerable restraint against the free movement of the repair material, may represent a limit to the effective application of these materials. For this reason, shrinkage compatibility of HPC with the existing concrete substrate needs to be experimentally and numerically assessed. A study is herein presented where, based on experimental tests, different numerical models are developed and compared to assess and eventually minimize the risk of shrinkage cracking in bridge piers strengthened with HPC.


Author(s):  
M. Myint Lwin ◽  
Bijan Khaleghi

The Washington State Department of Transportation is one of several state departments of transportation involved in demonstration projects to acquire information and data on the design, fabrication, and construction of prestressed concrete bridges with high-performance concrete (HPC). Predicting the time-dependent prestress losses due to the creep and shrinkage of HPC and the relaxation of prestressing steel is difficult because of the limited experience with and data on the creep and shrinkage properties of HPC. The AASHTO load resistance factor design specification approach to estimating prestress losses is discussed, and the time-step method and the modified rate-of-creep method are introduced as ways of predicting more accurately the time-dependent prestress losses. A design example is used to compare and discuss numerically the prestress losses computed by the various methods. The modified rate-of-creep analysis method yields the lowest losses. The modified rate-of-creep method is a desirable, comprehensive, applicable, and practical method for estimating time-dependent prestress losses in composite and noncomposite prestressed concrete girders with HPC. This method is suitable for manual and electronic computation.


2016 ◽  
Vol 142 (10) ◽  
pp. 04016062 ◽  
Author(s):  
Brock D. Hedegaard ◽  
Catherine E. W. French ◽  
Carol K. Shield

2003 ◽  
Vol 30 (5) ◽  
pp. 841-849 ◽  
Author(s):  
Mostafa A Hassanain ◽  
Robert E Loov

Recent surveys have indicated that between 30% and 40% of all bridges in North America are in various states of deterioration. Funding is limited owing to the existence of other deficient components of the transportation infrastructure. It is clear, therefore, that the return on the available funding needs to be maximized. This paper presents a review of publications on cost optimization of concrete bridge components and systems and then continues with a review of the state-of-the-art in life-cycle cost (LCC) analysis and design of concrete bridges. The main objective of the paper is to encourage bridge engineers to move towards the increased use of advanced analysis and design optimization methods.Key words: bridge, concrete, cost, high-performance concrete, infrastructure, life-cycle cost, optimization, prestressed girders, reliability.


2020 ◽  
Vol 6 (1) ◽  
pp. 130-141
Author(s):  
Amin K Akhnoukh

The objective of this research is to investigate the advantage of using large-diameter 0.7-inch (18 mm) strands in pretention applications. Large-diameter strands are advantageous in bridge construction due to the increased girders capacity required to sustain exponential increase in vehicle numbers, sizes, and weights. In this research, flexure capacity of girders fabricated using 0.7-inch (18 mm) diameter strands will be calculated and compared to bridge capacities constructed using smaller strands. Finally, two similar bridge sections will be designed using 0.6-inch (15 mm) and 0.7-inch (18 mm) diameter strands to quantify the structural advantages of increased strand diameter. The research findings showed that a smaller number of girders is required for bridge construction when larger strands are used. Four girders are required to design the bridge panel using high performance concrete and large diameter strands, as compared to 6 girders required when regular concrete mix designs and normal size strands are used. The advantages of large strands and high-performance concrete mixes include expedited construction, reduced project dead loads, and reduced demand for labor and equipment. Thus, large strands can partially contribute to the improvement of bridge conditions, minimize construction cost, and increase construction site safety.


Sign in / Sign up

Export Citation Format

Share Document