Collisional Diffraction Emerges from Simple Control of Limbless Locomotion

Author(s):  
Perrin E. Schiebel ◽  
Jennifer M. Rieser ◽  
Alex M. Hubbard ◽  
Lillian Chen ◽  
Daniel I. Goldman
Keyword(s):  
2015 ◽  
Vol 48 (1) ◽  
pp. 827-828
Author(s):  
Giancarlo Cicconofri ◽  
Antonio DeSimone

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaotian Zhang ◽  
Noel Naughton ◽  
Tejaswin Parthasarathy ◽  
Mattia Gazzola

AbstractMotivated by a possible convergence of terrestrial limbless locomotion strategies ultimately determined by interfacial effects, we show how both 3D gait alterations and locomotory adaptations to heterogeneous terrains can be understood through the lens of local friction modulation. Via an effective-friction modeling approach, compounded by 3D simulations, the emergence and disappearance of a range of locomotory behaviors observed in nature is systematically explained in relation to inhabited environments. Our approach also simplifies the treatment of terrain heterogeneity, whereby even solid obstacles may be seen as high friction regions, which we confirm against experiments of snakes ‘diffracting’ while traversing rows of posts, similar to optical waves. We further this optic analogy by illustrating snake refraction, reflection and lens focusing. We use these insights to engineer surface friction patterns and demonstrate passive snake navigation in complex topographies. Overall, our study outlines a unified view that connects active and passive 3D mechanics with heterogeneous interfacial effects to explain a broad set of biological observations, and potentially inspire engineering design.


2021 ◽  
pp. 1-5
Author(s):  
Marvalee H Wake
Keyword(s):  

2013 ◽  
Vol 280 (1772) ◽  
pp. 20132160 ◽  
Author(s):  
M. Spinner ◽  
S. N. Gorb ◽  
G. Westhoff

The skin of geckos is covered with countless microscopic protuberances (spines). This surface structure causes low wettability to water. During evolution, representatives of the recent gekkotan clade Pygopodidae started slithering on the ground. This manner of locomotion affected limb reduction resulting in a snake-like body. Regarding abrasion and frictional properties, a surface covered with gekkotan spines is a topography that hampers the snake-like locomotion mode. Using scanning electron microscopy, we investigated the shed skins of two pygopodid lizards, Lialis jicari (Papua snake lizard) and Lialis burtonis (Burton's legless lizard), in order to show epidermal adaptations to limbless locomotion. Our data showed that Pygopodidae differ from their relatives not only anatomically, but also in their epidermal microstructure. Scales of L. jicari have five different structural patterns on various body regions. Ventral scales have nanoridges, similar to those found on the ventralia of snakes. Surfaces of scales covering the jaw bones, have flattened spine-like microstructures that might be an adaptation to reduce abrasion. Dorsal scales have oblong microscopic bulges covered with nanoridges. Spines cover the undersides and the interstices of scales over the entire body of both species and in L. jicari also the top of dorsal head scales. Our measurements of surface wettability (surface free energy) show superhydrophobic properties of the spiny surfaces in comparison with the other microstructural patterns of other body parts.


2019 ◽  
Vol 116 (51) ◽  
pp. 25569-25574 ◽  
Author(s):  
Arshad Kudrolli ◽  
Bernny Ramirez

We investigate the dynamics ofLumbriculus variegatusin water-saturated sediment beds to understand limbless locomotion in the benthic zone found at the bottom of lakes and oceans. These slender aquatic worms are observed to perform elongation–contraction and transverse undulatory strokes in both water-saturated sediments and water. Greater drag anisotropy in the sediment medium is observed to boost the burrowing speed of the worm compared to swimming in water with the same stroke using drag-assisted propulsion. We capture the observed speeds by combining the calculated forms based on resistive-force theory of undulatory motion in viscous fluids and a dynamic anchor model of peristaltic motion in the sediments. Peristalsis is found to be effective for burrowing in noncohesive sediments which fill in rapidly behind the moving body inside the sediment bed. Whereas the undulatory stroke is found to be effective in water and in shallow sediment layers where anchoring is not possible to achieve peristaltic motion. We show that such dual strokes occur as well in the earthwormEisenia fetidawhich inhabits moist sediments that are prone to flooding. Our analysis in terms of the rheology of the medium shows that the dual strokes are exploited by organisms to negotiate sediment beds that may be packed heterogeneously and can be used by active intruders to move effectively from a fluid through the loose bed surface layer which fluidizes easily to the well-consolidated bed below.


Author(s):  
Gary W Gerald ◽  
Emma D Wass

Abstract Trade-offs among performance traits are often difficult to detect despite the physiological and morphological incompatibilities that underlie disparate traits being well understood. However, recent studies that have corrected for individual quality have found trade-offs in human athletes performing various performance tasks. Few studies have found trade-offs among multiple performance tasks after correcting for individual quality in non-human animals because of the difficulty in motivating many animals to perform biomechanically different tasks. We examined potential trade-offs in maximal speeds among ten locomotor conditions that involved the utilization of different locomotor modes in cornsnakes (Pantherophis guttatus). Snakes were assessed during terrestrial lateral undulation, swimming, concertina movements (small and large width) and six conditions of arboreal locomotion (combinations of three perch diameters and two inclines). We found no trade-offs among locomotor conditions when analysing uncorrected speeds or speeds corrected for body condition. However, we found several trade-offs among modes and treatments for speeds corrected for individual quality. Terrestrial lateral undulation speeds were negatively related to speeds of concertina and two of the arboreal locomotion conditions. A trade-off between speeds on large and small perch diameters on a 30° incline was also detected and probably reflects potential conflicts in traits that maximize lateral undulation and concertina.


2012 ◽  
Vol 9 (76) ◽  
pp. 3140-3155 ◽  
Author(s):  
Marie-Christin G. Klein ◽  
Stanislav N. Gorb

On the basis of structural and experimental data, it was previously demonstrated that the snake integument consists of a hard, robust, inflexible outer surface ( Oberhäutchen and β-layer) and softer, flexible inner layers (α-layers). It is not clear whether this phenomenon is a general adaptation of snakes to limbless locomotion or only to specific conditions, such as habitat and locomotion. The aim of the present study was to compare the structure and material properties of the outer scale layers (OSLs) and inner scale layers (ISLs) of the exuvium epidermis in four snake species specialized to live in different habitats: Lampropeltis getula californiae (terrestrial), Epicrates cenchria cenchria (generalist), Morelia viridis (arboreal) and Gongylophis colubrinus (sand-burrowing). Scanning electron microscopy (SEM) of skin cross sections revealed a strong variation in the epidermis structure between species. The nanoindentation experiments clearly demonstrated a gradient of material properties along the epidermis in the integument of all the species studied. The presence of such a gradient is a possible adaptation to locomotion and wear minimization on natural substrates. In general, the difference in both the effective elastic modulus and hardness of the OSL and ISL between species was not large compared with the difference in epidermis thickness and architecture.


Sign in / Sign up

Export Citation Format

Share Document