Multi-class SVM Based Real-Time Recognition of Sit-to-Stand and Stand-to-Sit Transitions for a Bionic Knee Exoskeleton in Transparent Mode

Author(s):  
Xiuhua Liu ◽  
Zhihao Zhou ◽  
Jingeng Mai ◽  
Qining Wang
Keyword(s):  
Author(s):  
Seung-Jun Hyun ◽  
Jin Lee ◽  
Byoung-Hee Lee

This study aimed to investigate the effects of lower limbs muscles’ strength, balance, walking, and quality of life through sit-to-stand training combined with real-time visual feedback (RVF-STS group) in patients with stroke and to compare the effects of classic sit-to-stand training (C-STS group). Thirty patients with stroke were randomly divided into two groups. The RVF-STS group received sit-to-stand training combined with real-time visual feedback using a Wii Balance Board (n = 15), and the C-STS group received classic sit-to-stand training (n = 15). All participants received training for 20 min once a day, 5 days a week for 6 weeks, and both groups underwent general physical therapy for 30 min before training. Before and after the training, the muscle strength of the hip flexor, abductor, and knee extensor were measured, and the Wii Balance Board was used to perform the center of pressure test and Berg Balance Scale to evaluate static and dynamic balance. Additionally, the 10 m walking test and the Timed Up and Go test were performed to evaluate gait function. The Stroke-Specific Quality of Life was used to measure the quality of life. The results showed that the lower extremity muscle strength, balance ability, walking ability, and quality of life of the RVF-STS group significantly improved in comparison of the pre- and post-differences (p < 0.05), and it also showed significant differences between groups (p < 0.05). This study showed that sit-to-stand training combined with real-time visual feedback was effective at improving the muscle strength of the lower extremities, balance, gait, and quality of life in patients with stroke. Therefore, repeating sit-to-stand training combined with real-time visual feedback could be used as an effective treatment method for patients with stroke.


Author(s):  
AC Jacobson ◽  
B Bakashi Nategh ◽  
LK Fellows ◽  
N Mayo

Background: Acute stroke care pathways are increasingly implemented to improve integration of best-practices, but evidence for impact on functional outcomes is not strong. Elements missing from care-pathways are those directly targeting improvement in function: sit-to-stand and time spent walking. The Stroke Team uses care-pathways to track functional capacity, what the patient can and cannot do, but performance on these key outcomes is difficult to track as the patient is observed by multiple people throughout the day. The purpose of this study is to demonstrate the feasibility and added-value of real-time tracking of patients’ mobility. Methods: A chart review was carried out to identify the extent to which functional capacity and performance is tracked routinely by the Stroke Team. Ethical approval was gained for routine use of accelerometers to be affixed to the unaffected thigh. Results: Swallowing, bladder control, toileting, and feeding were consistently tracked for ~90% of patients. Bed-mobility and capacity to transfer rarely tracked (<12%). Capacity for walking and sit-to-stand was noted but never frequency (performance). Conclusion: Our proof-of concept study will test 30 patients over the next 2 months and link real time performance on transitions and walking to stroke severity and outcome.


1979 ◽  
Vol 44 ◽  
pp. 41-47
Author(s):  
Donald A. Landman

This paper describes some recent results of our quiescent prominence spectrometry program at the Mees Solar Observatory on Haleakala. The observations were made with the 25 cm coronagraph/coudé spectrograph system using a silicon vidicon detector. This detector consists of 500 contiguous channels covering approximately 6 or 80 Å, depending on the grating used. The instrument is interfaced to the Observatory’s PDP 11/45 computer system, and has the important advantages of wide spectral response, linearity and signal-averaging with real-time display. Its principal drawback is the relatively small target size. For the present work, the aperture was about 3″ × 5″. Absolute intensity calibrations were made by measuring quiet regions near sun center.


Author(s):  
Alan S. Rudolph ◽  
Ronald R. Price

We have employed cryoelectron microscopy to visualize events that occur during the freeze-drying of artificial membranes by employing real time video capture techniques. Artificial membranes or liposomes which are spherical structures within internal aqueous space are stabilized by water which provides the driving force for spontaneous self-assembly of these structures. Previous assays of damage to these structures which are induced by freeze drying reveal that the two principal deleterious events that occur are 1) fusion of liposomes and 2) leakage of contents trapped within the liposome [1]. In the past the only way to access these events was to examine the liposomes following the dehydration event. This technique allows the event to be monitored in real time as the liposomes destabilize and as water is sublimed at cryo temperatures in the vacuum of the microscope. The method by which liposomes are compromised by freeze-drying are largely unknown. This technique has shown that cryo-protectants such as glycerol and carbohydrates are able to maintain liposomal structure throughout the drying process.


Author(s):  
R.P. Goehner ◽  
W.T. Hatfield ◽  
Prakash Rao

Computer programs are now available in various laboratories for the indexing and simulation of transmission electron diffraction patterns. Although these programs address themselves to the solution of various aspects of the indexing and simulation process, the ultimate goal is to perform real time diffraction pattern analysis directly off of the imaging screen of the transmission electron microscope. The program to be described in this paper represents one step prior to real time analysis. It involves the combination of two programs, described in an earlier paper(l), into a single program for use on an interactive basis with a minicomputer. In our case, the minicomputer is an INTERDATA 70 equipped with a Tektronix 4010-1 graphical display terminal and hard copy unit.A simplified flow diagram of the combined program, written in Fortran IV, is shown in Figure 1. It consists of two programs INDEX and TEDP which index and simulate electron diffraction patterns respectively. The user has the option of choosing either the indexing or simulating aspects of the combined program.


Author(s):  
R. Rajesh ◽  
R. Droopad ◽  
C. H. Kuo ◽  
R. W. Carpenter ◽  
G. N. Maracas

Knowledge of material pseudodielectric functions at MBE growth temperatures is essential for achieving in-situ, real time growth control. This allows us to accurately monitor and control thicknesses of the layers during growth. Undesired effusion cell temperature fluctuations during growth can thus be compensated for in real-time by spectroscopic ellipsometry. The accuracy in determining pseudodielectric functions is increased if one does not require applying a structure model to correct for the presence of an unknown surface layer such as a native oxide. Performing these measurements in an MBE reactor on as-grown material gives us this advantage. Thus, a simple three phase model (vacuum/thin film/substrate) can be used to obtain thin film data without uncertainties arising from a surface oxide layer of unknown composition and temperature dependence.In this study, we obtain the pseudodielectric functions of MBE-grown AlAs from growth temperature (650°C) to room temperature (30°C). The profile of the wavelength-dependent function from the ellipsometry data indicated a rough surface after growth of 0.5 μm of AlAs at a substrate temperature of 600°C, which is typical for MBE-growth of GaAs.


Sign in / Sign up

Export Citation Format

Share Document