Leader-Follower Formation Control Based on Artificial Potential Field and Sliding Mode Control

Author(s):  
Xu Wang ◽  
Hong-an Yang ◽  
Haojie Chen ◽  
Jinguo Wang ◽  
Luoyu Bai ◽  
...  
2013 ◽  
Vol 25 (1) ◽  
pp. 60-71 ◽  
Author(s):  
Mohammad Fadhil Bin Abas ◽  
◽  
Dwi Pebrianti ◽  
Syaril Azrad Md. Ali ◽  
Daisuke Iwakura ◽  
...  

This paper describes the leader-follower formation control using two different approaches which are the PID leader-follower formation control (PID-LFFC) and Sliding Mode Control leader-follower formation control (SMC-LFFC). The strategy used in this paper is to apply the control algorithm for conducting a circular motion. This task is known to be important since a trajectory is a combination of movement. This movement can be divided into straight or curve lines. Curves lines or circular motion is essential for obstacle avoidance and also for turning movement. The curves lines or circular motion gives lower trajectory distance than only using straight or angled lines. Based on the experimental result, it is seen that the performance of the algorithm is reliable. When using SMC-LFFC over the PID-LFFC, the leader to follower distance error is 30% smaller and has a high 70% occurrence at 0 errors. Additionally, this research is known to be the first conducted in Japan.


2016 ◽  
Vol 13 (6) ◽  
pp. 172988141667769 ◽  
Author(s):  
Dianwei Qian ◽  
Chengdong Li ◽  
Shiwen Tong ◽  
Lu Yu

This article proposes a control scheme for formation of maneuvers of a team of mobile robots. The control scheme integrates the integral sliding mode control method with the nonlinear disturbance observer technique. The leader–follower formation dynamics suffer from uncertainties originated from the individual robots. The uncertainties challenge the formation control of such robots. Assuming that the uncertainties are unknown but bounded, an nonlinear disturbance observer-based observer is utilized to approximate them. The observer outputs feed on an integral sliding mode control-based controller. The controller and observer are integrated into the control scheme to realize formation maneuvers despite uncertainties. The formation stability is analyzed by means of the Lyapunov’s theorem. In the sense of Lyapunov, not only the convergence of the approximation errors is guaranteed but also such a control scheme can asymptotically stabilize the formation system. Compared to the results by the sole integral sliding mode control, some simulations are presented to demonstrate the feasibility and performance of the control scheme.


Sign in / Sign up

Export Citation Format

Share Document