ECG Signal Dimensionality Reduction-Based Atrial Fibrillation Detection

Author(s):  
Ambika Annavarapu ◽  
Surekha Borra ◽  
Padmavathi Kora
2021 ◽  
Author(s):  
Yunfan Chen ◽  
Chong Zhang ◽  
Chengyu Liu ◽  
Yiming Wang ◽  
Xiangkui Wan

Abstract Atrial fibrillation is one of the most common arrhythmias in clinics, which has a great impact on people's physical and mental health. Electrocardiogram (ECG) based arrhythmia detection is widely used in early atrial fibrillation detection. However, ECG needs to be manually checked in clinical practice, which is time-consuming and labor-consuming. It is necessary to develop an automatic atrial fibrillation detection system. Recent research has demonstrated that deep learning technology can help to improve the performance of the automatic classification model of ECG signals. To this end, this work proposes effective deep learning based technology to automatically detect atrial fibrillation. First, novel preprocessing algorithms of wavelet transform and sliding window filtering (SWF) are introduced to reduce the noise of the ECG signal and to filter high-frequency components in the ECG signal, respectively. Then, a robust R-wave detection algorithm is developed, which achieves 99.22% detection sensitivity, 98.55% positive recognition rate, and 2.25% deviance on the MIT-BIH arrhythmia database. In addition, we propose a feedforward neural network (FNN) to detect atrial fibrillation based on ECG records. Experiments verified by a 10-fold cross-validation strategy show that the proposed model achieves competitive detection performance and can be applied to wearable detection devices. The proposed atrial fibrillation detection model achieves an accuracy of 84.00%, the detection sensitivity of 84.26%, the specificity of 93.23%, and the area under the receiver working curve of 89.40% on the mixed dataset composed of Challenge2017 database and MIT-BIH arrhythmia database.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Hongpo Zhang ◽  
Renke He ◽  
Honghua Dai ◽  
Mingliang Xu ◽  
Zongmin Wang

Atrial fibrillation is the most common arrhythmia and is associated with high morbidity and mortality from stroke, heart failure, myocardial infarction, and cerebral thrombosis. Effective and rapid detection of atrial fibrillation is critical to reducing morbidity and mortality in patients. Screening atrial fibrillation quickly and efficiently remains a challenging task. In this paper, we propose SS-SWT and SI-CNN: an atrial fibrillation detection framework for the time-frequency ECG signal. First, specific-scale stationary wavelet transform (SS-SWT) is used to decompose a 5-s ECG signal into 8 scales. We select specific scales of coefficients as valid time-frequency features and abandon the other coefficients. The selected coefficients are fed to the scale-independent convolutional neural network (SI-CNN) as a two-dimensional (2D) matrix. In SI-CNN, a convolution kernel specifically for the time-frequency characteristics of ECG signals is designed. During the convolution process, the independence between each scale of coefficient is preserved, and the time domain and the frequency domain characteristics of the ECG signal are effectively extracted, and finally the atrial fibrillation signal is quickly and accurately identified. In this study, experiments are performed using the MIT-BIH AFDB data in 5-s data segments. We achieve 99.03% sensitivity, 99.35% specificity, and 99.23% overall accuracy. The SS-SWT and SI-CNN we propose simplify the feature extraction step, effectively extracts the features of ECG, and reduces the feature redundancy that may be caused by wavelet transform. The results shows that the method can effectively detect atrial fibrillation signals and has potential in clinical application.


2021 ◽  
Vol 11 (13) ◽  
pp. 5908
Author(s):  
Raquel Cervigón ◽  
Brian McGinley ◽  
Darren Craven ◽  
Martin Glavin ◽  
Edward Jones

Although Atrial Fibrillation (AF) is the most frequent cause of cardioembolic stroke, the arrhythmia remains underdiagnosed, as it is often asymptomatic or intermittent. Automated detection of AF in ECG signals is important for patients with implantable cardiac devices, pacemakers or Holter systems. Such resource-constrained systems often operate by transmitting signals to a central server where diagnostic decisions are made. In this context, ECG signal compression is being increasingly investigated and employed to increase battery life, and hence the storage and transmission efficiency of these devices. At the same time, the diagnostic accuracy of AF detection must be preserved. This paper investigates the effects of ECG signal compression on an entropy-based AF detection algorithm that monitors R-R interval regularity. The compression and AF detection algorithms were applied to signals from the MIT-BIH AF database. The accuracy of AF detection on reconstructed signals is evaluated under varying degrees of compression using the state-of-the-art Set Partitioning In Hierarchical Trees (SPIHT) compression algorithm. Results demonstrate that compression ratios (CR) of up to 90 can be obtained while maintaining a detection accuracy, expressed in terms of the area under the receiver operating characteristic curve, of at least 0.9. This highlights the potential for significant energy savings on devices that transmit/store ECG signals for AF detection applications, while preserving the diagnostic integrity of the signals, and hence the detection performance.


Sign in / Sign up

Export Citation Format

Share Document