scholarly journals The Effects of Compression on the Detection of Atrial Fibrillation in ECG Signals

2021 ◽  
Vol 11 (13) ◽  
pp. 5908
Author(s):  
Raquel Cervigón ◽  
Brian McGinley ◽  
Darren Craven ◽  
Martin Glavin ◽  
Edward Jones

Although Atrial Fibrillation (AF) is the most frequent cause of cardioembolic stroke, the arrhythmia remains underdiagnosed, as it is often asymptomatic or intermittent. Automated detection of AF in ECG signals is important for patients with implantable cardiac devices, pacemakers or Holter systems. Such resource-constrained systems often operate by transmitting signals to a central server where diagnostic decisions are made. In this context, ECG signal compression is being increasingly investigated and employed to increase battery life, and hence the storage and transmission efficiency of these devices. At the same time, the diagnostic accuracy of AF detection must be preserved. This paper investigates the effects of ECG signal compression on an entropy-based AF detection algorithm that monitors R-R interval regularity. The compression and AF detection algorithms were applied to signals from the MIT-BIH AF database. The accuracy of AF detection on reconstructed signals is evaluated under varying degrees of compression using the state-of-the-art Set Partitioning In Hierarchical Trees (SPIHT) compression algorithm. Results demonstrate that compression ratios (CR) of up to 90 can be obtained while maintaining a detection accuracy, expressed in terms of the area under the receiver operating characteristic curve, of at least 0.9. This highlights the potential for significant energy savings on devices that transmit/store ECG signals for AF detection applications, while preserving the diagnostic integrity of the signals, and hence the detection performance.

Author(s):  
Mohand Lokman Ahmad Al-dabag ◽  
Haider Th. Salim ALRikabi ◽  
Raid Rafi Omar Al-Nima

One of the common types of arrhythmia is Atrial Fibrillation (AF), it may cause death to patients. Correct diagnosing of heart problem through examining the Electrocardiogram (ECG) signal will lead to prescribe the right treatment for a patient. This study proposes a system that distinguishes between the normal and AF ECG signals. First, this work provides a novel algorithm for segmenting the ECG signal for extracting a single heartbeat. The algorithm utilizes low computational cost techniques to segment the ECG signal. Then, useful pre-processing and feature extraction methods are suggested. Two classifiers, Support Vector Machine (SVM) and Multilayer Perceptron (MLP), are separately used to evaluate the two proposed algorithms. The performance of the last proposed method with the two classifiers (SVM and MLP) show an improvement of about (19% and 17%, respectively) after using the proposed segmentation method so it became 96.2% and 97.5%, respectively.


Author(s):  
WANSONG XU ◽  
TIANWU CHEN ◽  
FANYU DU

Objective: The detection of QRS complexes is an important part of computer-aided analysis of electrocardiogram (ECG). However, most of the existing detection algorithms are mainly for single-lead ECG signals, which requires high quality of signal. If the signal quality decreases suddenly due to some interference, then the current algorithm is easy to cause misjudgment or missed detection. To improve the detection ability of QRS complexes under sudden interference, we study the QRS complexes information on multiple leads in-depth, and propose a two-lead joint detection algorithm of QRS complexes. Methods: Firstly, the suspected QRS complexes are screened on the main lead. For the suspected QRS complexes with low confidence and the complexes that may be missed, further accurate detection and joint judgment shall be carried out at the corresponding position of the auxiliary lead. At the same time, the adaptive threshold adjustment algorithm and backtracking mechanism are used to modify the detection results. Results: The proposed detection algorithm is validated using 48 ECG records of the MIT-BIH arrhythmia database, and achieves average detection accuracy of 99.71%, sensitivity of 99.88% and positive predictivity of 99.81%. Conclusion: The proposed algorithm has high accuracy, which can effectively deal with the sudden interference of ECG signal. Meanwhile, the algorithm requires small amount of computation, and can be embedded into hardware for real-time detection.


2019 ◽  
Vol 19 (03) ◽  
pp. 1950005
Author(s):  
ABDELNOUR BOUKAACHE ◽  
NOUREDDINE DOGHMANE ◽  
DJALIL BOUDJEHEM

In this paper, we propose an electrocardiogram (ECG) signal compression algorithm that is based on wavelet and a new modified set partitioning in hierarchical trees (SPIHT) algorithm. The proposed algorithm contains a preprocessing of the approximation subband before the coding step by mean removing. Three other modifications are also introduced to the SPIHT algorithm. The first one is a new initialization of the two lists of insignificant points (LIP) and insignificant sets (LIS), while the second is concerning the position of inserting new entries of type [Formula: see text] at the LIS, and in the last one, the redundancy in checking type [Formula: see text] entries in the original method was found and avoided. The new proposed coding algorithm is applied to ECG signal compression and the obtained numerical results on the MIT-BIH database show the efficient performances of the proposed SPIHT algorithm over the original method and other existing methods.


2011 ◽  
Vol 11 (01) ◽  
pp. 15-29 ◽  
Author(s):  
DIB. NABIL ◽  
F. BEREKSI-REGUIG

An accurate measurement of the different electrocardiogram (ECG) intervals is dependent on the accurate identification of the beginning and the end of the P, QRS, and T waves. Available commercial systems provide a good QRS detection accuracy. However, the detection of the P and T waves remains a serious challenge due to their widely differing morphologies in normal and abnormal beats. In this paper, a new algorithm for the detection of the QRS complex as well as for P and T waves identification is provided. The proposed algorithm is based on different approaches and methods such as derivations, thresholding, and surface indicator. The proposed algorithm is tested and evaluated on ECG signals from the universal MIT-BIH database. It shows a good ability to detect P, QRS, and T waves for different cases of ECG signal even in very noisy conditions. The obtained QRS, sensitivity and positive predictivity are respectively 95.39% and 98.19%. The developed algorithm is also able to separate the overlapping P and T waves.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Hongpo Zhang ◽  
Renke He ◽  
Honghua Dai ◽  
Mingliang Xu ◽  
Zongmin Wang

Atrial fibrillation is the most common arrhythmia and is associated with high morbidity and mortality from stroke, heart failure, myocardial infarction, and cerebral thrombosis. Effective and rapid detection of atrial fibrillation is critical to reducing morbidity and mortality in patients. Screening atrial fibrillation quickly and efficiently remains a challenging task. In this paper, we propose SS-SWT and SI-CNN: an atrial fibrillation detection framework for the time-frequency ECG signal. First, specific-scale stationary wavelet transform (SS-SWT) is used to decompose a 5-s ECG signal into 8 scales. We select specific scales of coefficients as valid time-frequency features and abandon the other coefficients. The selected coefficients are fed to the scale-independent convolutional neural network (SI-CNN) as a two-dimensional (2D) matrix. In SI-CNN, a convolution kernel specifically for the time-frequency characteristics of ECG signals is designed. During the convolution process, the independence between each scale of coefficient is preserved, and the time domain and the frequency domain characteristics of the ECG signal are effectively extracted, and finally the atrial fibrillation signal is quickly and accurately identified. In this study, experiments are performed using the MIT-BIH AFDB data in 5-s data segments. We achieve 99.03% sensitivity, 99.35% specificity, and 99.23% overall accuracy. The SS-SWT and SI-CNN we propose simplify the feature extraction step, effectively extracts the features of ECG, and reduces the feature redundancy that may be caused by wavelet transform. The results shows that the method can effectively detect atrial fibrillation signals and has potential in clinical application.


2020 ◽  
Vol 10 (3) ◽  
pp. 976
Author(s):  
Rana N. Costandy ◽  
Safa M. Gasser ◽  
Mohamed S. El-Mahallawy ◽  
Mohamed W. Fakhr ◽  
Samir Y. Marzouk

Electrocardiogram (ECG) signal analysis is a critical task in diagnosing the presence of any cardiac disorder. There are limited studies on detecting P-waves in various atrial arrhythmias, such as atrial fibrillation (AFIB), atrial flutter, junctional rhythm, and other arrhythmias due to P-wave variability and absence in various cases. Thus, there is a growing need to develop an efficient automated algorithm that annotates a 2D printed version of P-waves in the well-known ECG signal databases for validation purposes. To our knowledge, no one has annotated P-waves in the MIT-BIH atrial fibrillation database. Therefore, it is a challenge to manually annotate P-waves in the MIT-BIH AF database and to develop an automated algorithm to detect the absence and presence of different shapes of P-waves. In this paper, we present the manual annotation of P-waves in the well-known MIT-BIH AF database with the aid of a cardiologist. In addition, we provide an automatic P-wave segmentation for the same database using a fully convolutional neural network model (U-Net). This algorithm works on 2D imagery of printed ECG signals, as this type of imagery is the most commonly used in developing countries. The proposed automatic P-wave detection method obtained an accuracy and sensitivity of 98.56% and 98.78%, respectively, over the first 5 min of the second lead of the MIT-BIH AF database (a total of 8280 beats). Moreover, the proposed method is validated using the well-known automatically and manually annotated QT database (a total of 11,201 and 3194 automatically and manually annotated beats, respectively). This results in accuracies of 98.98 and 98.9%, and sensitivities of 98.97 and 97.24% for the automatically and manually annotated QT databases, respectively. Thus, these results indicate that the proposed automatic method can be used for analyzing long-printed ECG signals on mobile battery-driven devices using only images of the ECG signals, without the need for a cardiologist.


2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Necmettin Sezgin

This paper aims to analyze the electrocardiography (ECG) signals for patient with atrial fibrillation (AF) by using bispectrum and extreme learning machine (ELM). AF is the most common irregular heart beat disease which may cause many cardiac diseases as well. Bispectral analysis was used to extract the nonlinear information in the ECG signals. The bispectral features of each ECG episode were determined and fed to the ELM classifier. The classification accuracy of ELM to distinguish nonterminating, terminating AF, and terminating immediately AF was 96.25%. In this study, the normal ECG signal was also compared with AF ECG signal due to the nonlinearity which was determined by bispectrum. The classification result of ELM was 99.15% to distinguish AF ECGs from normal ECGs.


2013 ◽  
Vol 427-429 ◽  
pp. 1691-1695 ◽  
Author(s):  
Yu Pang ◽  
Lu Deng ◽  
Jin Zhao Lin ◽  
Zhang Yong Li ◽  
Guo Quan Li ◽  
...  

Baseline drift is the main noise of ECG signals which affects the detection accuracy so its removal plays a significantrole in the ECG signal preprocessing. Complex calculation and non-optimal signal processing cause problems of ineffective results and low real-time effects in traditional methods. This paper designs a new filter to remove baseline drift based on the theory of mathematical morphology, which is created by the geometric parameters of the ECG signal. Experiments show that the method can effectively remove the noise of baseline drift by simple computation and is helpful to improve the detection accuracy.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
J Y Chiang ◽  
C M Fu ◽  
Y C Lin ◽  
B W Ku ◽  
S U Hsu ◽  
...  

Abstract Background Atrial fibrillation (AF) is the most common arrhythmia, and its paroxysmal and short duration nature makes its detection challenging. The most important limitation of current smartwatches is that patients need to touch to the sensor of the watch to record signals when patients feel discomfort. We developed a wearable smart watch and evaluated its accuracy to differentiate AF from sinus rhythm, which can continuously detecting heart rhythm without hand touching the device. Methods and results A wearable smart watch with PPG sensor and electrocardiogram (ECG) recording function was used for signal acquisition. A total 399 patients with a mean age of 67 years old were enrolled in the study, of whom 237 (81.5%) were male, and 101 have been diagnosed with AF. Pulse wave extracted from the green light spectrum of the signal and ECG were recorded for about 10 minutes for each patient. Pulse-to-pulse intervals (PPI) were automatically identified. All ECG signals were verified by two cardiologists. The correlation between R-to-R interval on ECG and PPI were excellent, with a correlation coefficient R >0.99 (p<0.05). An entropy-based algorithm which combined Shannon entropy of successive difference of PPI and sample entropy of PPI was used to discriminate between AF and sinus rhythm. This method had high sensitivity and specificity (96% and 98%, respectively), the area under receiver operating characteristic curve reached 0.98. Conclusions We developed an entropy-based algorithm for AF detection with PPG signal recorded by a wearable smart watch. This algorithm discriminates AF from sinus rhythm accurately. This advance in technology overcomes an important clinical obstacle and can increase the AF detection rate tremendously.


Sign in / Sign up

Export Citation Format

Share Document