scholarly journals Machine Learning for Structured Clinical Data

Author(s):  
Brett Beaulieu-Jones

A large volume of datasets is available in various fields that are stored to be somewhere which is called big data. Big Data healthcare has clinical data set of every patient records in huge amount and they are maintained by Electronic Health Records (EHR). More than 80 % of clinical data is the unstructured format and reposit in hundreds of forms. The challenges and demand for data storage, analysis is to handling large datasets in terms of efficiency and scalability. Hadoop Map reduces framework uses big data to store and operate any kinds of data speedily. It is not solely meant for storage system however conjointly a platform for information storage moreover as processing. It is scalable and fault-tolerant to the systems. Also, the prediction of the data sets is handled by machine learning algorithm. This work focuses on the Extreme Machine Learning algorithm (ELM) that can utilize the optimized way of finding a solution to find disease risk prediction by combining ELM with Cuckoo Search optimization-based Support Vector Machine (CS-SVM). The proposed work also considers the scalability and accuracy of big data models, thus the proposed algorithm greatly achieves the computing work and got good results in performance of both veracity and efficiency.


2022 ◽  
Vol 226 (1) ◽  
pp. S362-S363
Author(s):  
Matthew Hoffman ◽  
Wei Liu ◽  
Jade Tunguhan ◽  
Ghamar Bitar ◽  
Kaveeta Kumar ◽  
...  

2016 ◽  
Vol 17 (S15) ◽  
Author(s):  
Animesh Acharjee ◽  
Zsuzsanna Ament ◽  
James A. West ◽  
Elizabeth Stanley ◽  
Julian L. Griffin

Author(s):  
Bernard Aguilaniu ◽  
Eric Kelkel ◽  
Anne Rigal ◽  
David Hess ◽  
Amandine Briault ◽  
...  

2020 ◽  
pp. 799-810
Author(s):  
Matthew Nagy ◽  
Nathan Radakovich ◽  
Aziz Nazha

The volume and complexity of scientific and clinical data in oncology have grown markedly over recent years, including but not limited to the realms of electronic health data, radiographic and histologic data, and genomics. This growth holds promise for a deeper understanding of malignancy and, accordingly, more personalized and effective oncologic care. Such goals require, however, the development of new methods to fully make use of the wealth of available data. Improvements in computer processing power and algorithm development have positioned machine learning, a branch of artificial intelligence, to play a prominent role in oncology research and practice. This review provides an overview of the basics of machine learning and highlights current progress and challenges in applying this technology to cancer diagnosis, prognosis, and treatment recommendations, including a discussion of current takeaways for clinicians.


2019 ◽  
Vol 19 (Suppl 3) ◽  
pp. 89-90
Author(s):  
Alexander Holborow ◽  
Bryony Coupe ◽  
Mark Davies ◽  
Shangming Zhou

Author(s):  
Laura M. Stevens ◽  
Bobak J. Mortazavi ◽  
Rahul C. Deo ◽  
Lesley Curtis ◽  
David P. Kao

Use of machine learning (ML) in clinical research is growing steadily given the increasing availability of complex clinical data sets. ML presents important advantages in terms of predictive performance and identifying undiscovered subpopulations of patients with specific physiology and prognoses. Despite this popularity, many clinicians and researchers are not yet familiar with evaluating and interpreting ML analyses. Consequently, readers and peer-reviewers alike may either overestimate or underestimate the validity and credibility of an ML-based model. Conversely, ML experts without clinical experience may present details of the analysis that are too granular for a clinical readership to assess. Overwhelming evidence has shown poor reproducibility and reporting of ML models in clinical research suggesting the need for ML analyses to be presented in a clear, concise, and comprehensible manner to facilitate understanding and critical evaluation. We present a recommendation for transparent and structured reporting of ML analysis results specifically directed at clinical researchers. Furthermore, we provide a list of key reporting elements with examples that can be used as a template when preparing and submitting ML-based manuscripts for the same audience.


Sign in / Sign up

Export Citation Format

Share Document