A machine learning approach to suspect excessive inactivity in COPD patients using non-activity-related clinical data

Author(s):  
Bernard Aguilaniu ◽  
Eric Kelkel ◽  
Anne Rigal ◽  
David Hess ◽  
Amandine Briault ◽  
...  
2020 ◽  
Vol 65 (9) ◽  
pp. 1367-1377
Author(s):  
David Castiñeira ◽  
Katherine R Schlosser ◽  
Alon Geva ◽  
Amir R Rahmani ◽  
Gaston Fiore ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Moon-Jong Kim ◽  
Pil-Jong Kim ◽  
Hong-Gee Kim ◽  
Hong-Seop Kho

AbstractThe purpose of this study is to apply a machine learning approach to predict whether patients with burning mouth syndrome (BMS) respond to the initial approach and clonazepam therapy based on clinical data. Among the patients with the primary type of BMS who visited the clinic from 2006 to 2015, those treated with the initial approach of detailed explanation regarding home care instruction and use of oral topical lubricants, or who were prescribed clonazepam for a minimum of 1 month were included in this study. The clinical data and treatment outcomes were collected from medical records. Extreme Gradient-Boosted Decision Trees was used for machine learning algorithms to construct prediction models. Accuracy of the prediction models was evaluated and feature importance calculated. The accuracy of the prediction models for the initial approach and clonazepam therapy was 67.6% and 67.4%, respectively. Aggravating factors and psychological distress were important features in the prediction model for the initial approach, and intensity of symptoms before administration was the important feature in the prediction model for clonazepam therapy. In conclusion, the analysis of treatment outcomes in patients with BMS using a machine learning approach showed meaningful results of clinical applicability.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0255977
Author(s):  
Bernard Aguilaniu ◽  
David Hess ◽  
Eric Kelkel ◽  
Amandine Briault ◽  
Marie Destors ◽  
...  

Facilitating the identification of extreme inactivity (EI) has the potential to improve morbidity and mortality in COPD patients. Apart from patients with obvious EI, the identification of a such behavior during a real-life consultation is unreliable. We therefore describe a machine learning algorithm to screen for EI, as actimetry measurements are difficult to implement. Complete datasets for 1409 COPD patients were obtained from COLIBRI-COPD, a database of clinicopathological data submitted by French pulmonologists. Patient- and pulmonologist-reported estimates of PA quantity (daily walking time) and intensity (domestic, recreational, or fitness-directed) were first used to assign patients to one of four PA groups (extremely inactive [EI], overtly active [OA], intermediate [INT], inconclusive [INC]). The algorithm was developed by (i) using data from 80% of patients in the EI and OA groups to identify ‘phenotype signatures’ of non-PA-related clinical variables most closely associated with EI or OA; (ii) testing its predictive validity using data from the remaining 20% of EI and OA patients; and (iii) applying the algorithm to identify EI patients in the INT and INC groups. The algorithm’s overall error for predicting EI status among EI and OA patients was 13.7%, with an area under the receiver operating characteristic curve of 0.84 (95% confidence intervals: 0.75–0.92). Of the 577 patients in the INT/INC groups, 306 (53%) were reclassified as EI by the algorithm. Patient- and physician- reported estimation may underestimate EI in a large proportion of COPD patients. This algorithm may assist physicians in identifying patients in urgent need of interventions to promote PA.


Author(s):  
Abdelhamid Abdessalem ◽  
Hamza Zidoum ◽  
Fahd Zadjali ◽  
Rachid Hedjam ◽  
Aliya Al-Ansari ◽  
...  

Objective: This paper describes an unsupervised Machine Learning approach to estimate the HOMA-IR cut-off identifying subjects at risk of insulin resistance in a given ethnic group, based on the clinical data of a representative sample. Methods: We apply the approach to clinical data of individuals of Arab ancestors obtained from a family study conducted in the city of Nizwa between January 2000 and December 2004. First, we identify HOMA-IR-correlated variables to which we apply our own clustering algorithm. Two clusters having the smallest overlap in their HOMA-IR values are returned. These clusters represent samples of two populations: insulin sensitive subjects and individuals at risk of insulin resistance. The cut-off value is estimated from intersections of the Gaussian functions modelling the HOMA-IR distributions of these populations. Results: We identified a HOMA-IR cut-off value of 1.62+/-0.06. We demonstrated the validity of this cut-off by 1) Showing that clinical characteristics of the identified groups match well published research findings about insulin resistance. 2) Showing a strong relationship between the segmentations resulting from the proposed cut-off and that resulting from the 2-hours glucose cut-off recommended by WHO for detecting prediabetes. Finally, we showed that the method is also able to identify cut-off values for similar problems (e.g. fasting sugar cut-off for prediabetes). Conclusion: The proposed method defines a HOMA-IR cut-off value for detecting individuals at risk of insulin resistance. Such method can identify high risk individuals at early stage which may prevent or at least delay the onset of chronic diseases like type 2 diabetes. Keywords: Machine Learning; Feature Selection; K-mean++ Clustering; Insulin Resistance; HOMA-IR; T2DM.


Sign in / Sign up

Export Citation Format

Share Document