Research on Intelligent Sales Platform of Automobile Industry Based on Large Data Mining

Author(s):  
Jinzi Lee

Now a day different data mining algorithms are ready to create the specific set of data known as Pattern from a huge data repository, but there is no infrastructure or system to save it as persistent storage for the generated patterns. Pattern warehouse presents a foundation to make these patterns safe in the specific environment for long term use. Most organizations are excited to know the information or patterns rather than raw data or group of unprocessed data. Because extracted knowledge play a vital role to take right decision for the growth of an organization. We have examined the sources of patterns generated from large data sets. In this paper, we have presented little importance on the application area of pattern and idea of patter warehouse, the architecture of pattern warehouse then correlation between data warehouse and data mining, association between data mining and pattern warehouse, critical evaluation between existing approaches which theoretically published and more stress on association rule related review elements. In this paper, we analyze the patterns warehouse, data warehouse concerning various factors like storage space, type of storage unit, characteristics, and provide several research domains.


2021 ◽  
pp. 1826-1839
Author(s):  
Sandeep Adhikari, Dr. Sunita Chaudhary

The exponential growth in the use of computers over networks, as well as the proliferation of applications that operate on different platforms, has drawn attention to network security. This paradigm takes advantage of security flaws in all operating systems that are both technically difficult and costly to fix. As a result, intrusion is used as a key to worldwide a computer resource's credibility, availability, and confidentiality. The Intrusion Detection System (IDS) is critical in detecting network anomalies and attacks. In this paper, the data mining principle is combined with IDS to efficiently and quickly identify important, secret data of interest to the user. The proposed algorithm addresses four issues: data classification, high levels of human interaction, lack of labeled data, and the effectiveness of distributed denial of service attacks. We're also working on a decision tree classifier that has a variety of parameters. The previous algorithm classified IDS up to 90% of the time and was not appropriate for large data sets. Our proposed algorithm was designed to accurately classify large data sets. Aside from that, we quantify a few more decision tree classifier parameters.


Author(s):  
T. Ravindra Babu ◽  
M. Narasimha Murty ◽  
S. V. Subrahmanya

Author(s):  
Scott Nicholson ◽  
Jeffrey Stanton

Most people think of a library as the little brick building in the heart of their community or the big brick building in the center of a campus. These notions greatly oversimplify the world of libraries, however. Most large commercial organizations have dedicated in-house library operations, as do schools, non-governmental organizations, as well as local, state, and federal governments. With the increasing use of the Internet and the World Wide Web, digital libraries have burgeoned, and these serve a huge variety of different user audiences. With this expanded view of libraries, two key insights arise. First, libraries are typically embedded within larger institutions. Corporate libraries serve their corporations, academic libraries serve their universities, and public libraries serve taxpaying communities who elect overseeing representatives. Second, libraries play a pivotal role within their institutions as repositories and providers of information resources. In the provider role, libraries represent in microcosm the intellectual and learning activities of the people who comprise the institution. This fact provides the basis for the strategic importance of library data mining: By ascertaining what users are seeking, bibliomining can reveal insights that have meaning in the context of the library’s host institution. Use of data mining to examine library data might be aptly termed bibliomining. With widespread adoption of computerized catalogs and search facilities over the past quarter century, library and information scientists have often used bibliometric methods (e.g., the discovery of patterns in authorship and citation within a field) to explore patterns in bibliographic information. During the same period, various researchers have developed and tested data mining techniques—advanced statistical and visualization methods to locate non-trivial patterns in large data sets. Bibliomining refers to the use of these bibliometric and data mining techniques to explore the enormous quantities of data generated by the typical automated library.


Author(s):  
Zheng-Hua Tan

The explosive increase in computing power, network bandwidth and storage capacity has largely facilitated the production, transmission and storage of multimedia data. Compared to alpha-numeric database, non-text media such as audio, image and video are different in that they are unstructured by nature, and although containing rich information, they are not quite as expressive from the viewpoint of a contemporary computer. As a consequence, an overwhelming amount of data is created and then left unstructured and inaccessible, boosting the desire for efficient content management of these data. This has become a driving force of multimedia research and development, and has lead to a new field termed multimedia data mining. While text mining is relatively mature, mining information from non-text media is still in its infancy, but holds much promise for the future. In general, data mining the process of applying analytical approaches to large data sets to discover implicit, previously unknown, and potentially useful information. This process often involves three steps: data preprocessing, data mining and postprocessing (Tan, Steinbach, & Kumar, 2005). The first step is to transform the raw data into a more suitable format for subsequent data mining. The second step conducts the actual mining while the last one is implemented to validate and interpret the mining results. Data preprocessing is a broad area and is the part in data mining where essential techniques are highly dependent on data types. Different from textual data, which is typically based on a written language, image, video and some audio are inherently non-linguistic. Speech as a spoken language lies in between and often provides valuable information about the subjects, topics and concepts of multimedia content (Lee & Chen, 2005). The language nature of speech makes information extraction from speech less complicated yet more precise and accurate than from image and video. This fact motivates content based speech analysis for multimedia data mining and retrieval where audio and speech processing is a key, enabling technology (Ohtsuki, Bessho, Matsuo, Matsunaga, & Kayashi, 2006). Progress in this area can impact numerous business and government applications (Gilbert, Moore, & Zweig, 2005). Examples are discovering patterns and generating alarms for intelligence organizations as well as for call centers, analyzing customer preferences, and searching through vast audio warehouses.


2008 ◽  
pp. 2105-2120
Author(s):  
Kesaraporn Techapichetvanich ◽  
Amitava Datta

Both visualization and data mining have become important tools in discovering hidden relationships in large data sets, and in extracting useful knowledge and information from large databases. Even though many algorithms for mining association rules have been researched extensively in the past decade, they do not incorporate users in the association-rule mining process. Most of these algorithms generate a large number of association rules, some of which are not practically interesting. This chapter presents a new technique that integrates visualization into the mining association rule process. Users can apply their knowledge and be involved in finding interesting association rules through interactive visualization, after obtaining visual feedback as the algorithm generates association rules. In addition, the users gain insight and deeper understanding of their data sets, as well as control over mining meaningful association rules.


2008 ◽  
pp. 1696-1705
Author(s):  
George Tzanis ◽  
Christos Berberidis ◽  
Ioannis Vlahavas

At the end of the 1980s, a new discipline named data mining emerged. The introduction of new technologies such as computers, satellites, new mass storage media, and many others have lead to an exponential growth of collected data. Traditional data analysis techniques often fail to process large amounts of, often noisy, data efficiently in an exploratory fashion. The scope of data mining is the knowledge extraction from large data amounts with the help of computers. It is an interdisciplinary area of research that has its roots in databases, machine learning, and statistics and has contributions from many other areas such as information retrieval, pattern recognition, visualization, parallel and distributed computing. There are many applications of data mining in the real world. Customer relationship management, fraud detection, market and industry characterization, stock management, medicine, pharmacology, and biology are some examples (Two Crows Corporation, 1999).


2017 ◽  
Vol 7 (1.1) ◽  
pp. 286
Author(s):  
B. Sekhar Babu ◽  
P. Lakshmi Prasanna ◽  
P. Vidyullatha

 In current days, World Wide Web has grown into a familiar medium to investigate the new information, Business trends, trading strategies so on. Several organizations and companies are also contracting the web in order to present their products or services across the world. E-commerce is a kind of business or saleable transaction that comprises the transfer of statistics across the web or internet. In this situation huge amount of data is obtained and dumped into the web services. This data overhead tends to arise difficulties in determining the accurate and valuable information, hence the web data mining is used as a tool to determine and mine the knowledge from the web. Web data mining technology can be applied by the E-commerce organizations to offer personalized E-commerce solutions and better meet the desires of customers. By using data mining algorithm such as ontology based association rule mining using apriori algorithms extracts the various useful information from the large data sets .We are implementing the above data mining technique in JAVA and data sets are dynamically generated while transaction is processing and extracting various patterns.


Sign in / Sign up

Export Citation Format

Share Document