Contact Forces Between Wheels and Railway Determining in Dynamic Analysis. Numerical Simulation

Author(s):  
Kirill V. Eliseev
Author(s):  
Carlos Alberto Dutra Fraga Filho ◽  
Fernando César Meira Menandro ◽  
Rivânia Hermógenes Paulino de Romero ◽  
Juan Sérgio Romero Saenz

PAMM ◽  
2007 ◽  
Vol 7 (1) ◽  
pp. 4070035-4070036
Author(s):  
Z. Chen ◽  
S. Diebels ◽  
H. Steeb

Author(s):  
G Virzì Mariotti ◽  
G Ficarra

The research reported in this paper aims to simulate the road-holding of a virtual vehicle using multi-body simulation to estimate both the contact forces between the tyre and ground and the roll motion when cornering. Furthermore, the effect of the characteristic angles on the variation in the forces of the tyre in contact with the ground is studied to determine optimal values for these angles. Emphasis is placed on an average-class vehicle, of which both the external dimensions and mass are chosen appropriately, with a McPherson suspension mounted on both the front and the rear. The characteristic values of the camber and toe-in angles, in both the front and the rear, are optimized for motion in the curve under constant traction. The results of numerical simulation are compared with results from the theory of stability in the curve (given the vertical configuration of the vehicle).


2011 ◽  
Vol 48-49 ◽  
pp. 813-816 ◽  
Author(s):  
Qi Zhang ◽  
Jun Hai Ma

From a mathematical model of one kind complicated financial system, we make a dynamic analysis on this kind of system on the basis of studies of scholars both at home and abroad. We find characteristics of various dynamic systems driven by different parameters, and study possible Hopf bifurcation as well as the relationship between Hopf bifurcation and the values of parameters. Besides, we make use of algorithm to analyze complexity of the system. The results of numerical simulation prove that the theory used in the thesis is correct. This study is regarded with good theoretical and practical value.


2004 ◽  
Vol 126 (4) ◽  
pp. 673-682 ◽  
Author(s):  
F. G. Benitez ◽  
J. M. Madrigal ◽  
J. M. del Castillo

An infinitely variable transmission (IVT), based on the use of one-way action clutches, belonging to the family of ratcheting drives is described. The mechanical foundations and numerical simulations carried out along this research envisage a plausible approach to its use as gear-box in general mechanical industry and its prospective use in automobiles and self-propelled vehicles. The system includes one-way clutches—free wheels or overrunning clutches—and two epicyclic gear systems. The output velocity, with oscillatory character, common to the ratcheting drives systems, presents a period similar to that produced by alternative combustion motors, making this transmission compatible with automobile applications. The variation of the transmission is linear in all the working range. The kinematics operating principles behind this IVT is described followed by a numerical simulation of the dynamic analysis. A prototype has been constructed and tested to assess its mechanical efficiency for different reduction ratios. The efficiency values predicted by theory agree with those experimentally obtained on a bench-rig testing equipment.


Author(s):  
Ivan Metrikin ◽  
Andrey Borzov ◽  
Raed Lubbad ◽  
Sveinung Løset

Numerical simulation of a floater in ice-infested waters can be performed using a physics engine. This software can dynamically detect contacts and calculate the contact forces in a three-dimensional space among various irregularly shaped bodies, e.g. the floater and the ice floes. Previously, various physics engines were successfully applied to simulate floaters in ice. However, limited attention was paid to the criteria for selecting a particular engine for the simulation of a floater in broken-ice conditions. In this paper, four publicly available physics engines (AgX Multiphysics, Open Dynamics Engine, PhysX and Vortex) are compared in terms of integration performance and contact detection accuracy. These two aspects are assumed to be the most important for simulating a floater in broken ice. Furthermore, the access to code, documentation quality and the level of technical support are evaluated and discussed. The main conclusion is that each physics engine has its own strength and weaknesses and none of the engines is perfect. These strength and weaknesses are revealed and discussed in the paper.


1993 ◽  
Vol 8 (1-2) ◽  
pp. 63-70 ◽  
Author(s):  
B. Specht

This paper deals with the numerical simulation of the deployment process of a parabolic space reflector. The described deployable antenna is of the rigid panel type. The numerical simulations cover kinematic, inverse dynamic, quasi-static and dynamic analysis modes. Special phenomena included are hinge friction and the investigation of a deployment failure mode. Different software packages have been applied and their performance has been assessed.


2006 ◽  
Vol 41 (8) ◽  
pp. 609-622 ◽  
Author(s):  
M Li ◽  
J Zhang ◽  
J Fang ◽  
D W Shu ◽  
W Stronge

Sign in / Sign up

Export Citation Format

Share Document