Optimization of the characteristic angles of both front and rear McPherson suspensions on a circular track using multi-body numerical simulation

Author(s):  
G Virzì Mariotti ◽  
G Ficarra

The research reported in this paper aims to simulate the road-holding of a virtual vehicle using multi-body simulation to estimate both the contact forces between the tyre and ground and the roll motion when cornering. Furthermore, the effect of the characteristic angles on the variation in the forces of the tyre in contact with the ground is studied to determine optimal values for these angles. Emphasis is placed on an average-class vehicle, of which both the external dimensions and mass are chosen appropriately, with a McPherson suspension mounted on both the front and the rear. The characteristic values of the camber and toe-in angles, in both the front and the rear, are optimized for motion in the curve under constant traction. The results of numerical simulation are compared with results from the theory of stability in the curve (given the vertical configuration of the vehicle).

2017 ◽  
Vol 67 (4) ◽  
pp. 460
Author(s):  
Ilango Mahalingam ◽  
Chandramouli Padmanabhan

<p class="p1">Off-road vehicles achieve their mobility with the help of a track system. A track has large number of rigid bodies with pin joints leading to computational complexity in modelling the dynamic behaviour of the system. In this paper, a new idea is proposed, where the tracks are replaced by a set of imaginary wheels connected to the road wheels using mechanical links. A non-linear wheel terrain interaction model considering longitudinal slip is used to find out the normal and tangential contact forces. A linear trailing arm suspension, where a road arm connecting the road wheel and chassis with a rotational spring and damper system is considered. The differential algebraic equations (DAEs) from the multi-body model are derived in Cartesian coordinates and formulated using augmented formulation. The augmented equations are solved numerically using appropriate stabilisation techniques. The novel proposition is validated using experimental measurements done on a tracked vehicle.</p>


Mathematics ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 678
Author(s):  
Jozef Melcer ◽  
Eva Merčiaková ◽  
Mária Kúdelčíková ◽  
Veronika Valašková

The article is devoted to the numerical simulation and experimental verification of a vehicle’s response to kinematic excitation caused by driving along an asphalt road. The source of kinematic excitation was road unevenness, which was mapped by geodetic methods. Vertical unevenness was measured in 0.25 m increments in two longitudinal profiles of the road spaced two meters apart with precise leveling realized by geodetic digital levels. A space multi-body computational model of a Tatra 815 heavy truck was adopted. The model had 15 degrees of freedom. Nine degrees of freedom were tangible and six degrees of freedom were intangible. The equations of motion were derived in the form of second-order ordinary differential equations and were solved numerically by the Runge–Kutta method. A custom computer program in MATLAB was created for numerical simulation of vehicle movement (eps = 2−52). The program allowed simulation of quantities such as deflections, speeds, accelerations at characteristic points of the vehicle, and static or dynamic components of contact forces arising between the wheel and the road. The response of the vehicle (acceleration at characteristic points) at different speeds was experimentally tested. The experiment was numerically simulated and the results were mutually compared. The basic statistical characteristics of experimentally obtained and numerically simulated signals and their power spectral densities were compared.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4309
Author(s):  
Wojciech Wach ◽  
Jakub Zębala

Tire yaw marks deposited on the road surface carry a lot of information of paramount importance for the analysis of vehicle accidents. They can be used: (a) in a macro-scale for establishing the vehicle’s positions and orientation as well as an estimation of the vehicle’s speed at the start of yawing; (b) in a micro-scale for inferring among others things the braking or acceleration status of the wheels from the topology of the striations forming the mark. A mathematical model of how the striations will appear has been developed. The model is universal, i.e., it applies to a tire moving along any trajectory with variable curvature, and it takes into account the forces and torques which are calculated by solving a system of non-linear equations of vehicle dynamics. It was validated in the program developed by the author, in which the vehicle is represented by a 36 degree of freedom multi-body system with the TMeasy tire model. The mark-creating model shows good compliance with experimental data. It gives a deep view of the nature of striated yaw marks’ formation and can be applied in any program for the simulation of vehicle dynamics with any level of simplification.


2021 ◽  
Vol 9 (11) ◽  
pp. 1221
Author(s):  
Weixin Zhang ◽  
Ye Li ◽  
Yulei Liao ◽  
Qi Jia ◽  
Kaiwen Pan

The wave-driven catamaran is a small surface vehicle driven by ocean waves. It consists of a hull and hydrofoils, and has a multi-body dynamic structure. The process of moving from static state to autonomous navigation driven by ocean waves is called “self-propulsion”, and reflects the ability of the wave-driven catamaran to absorb oceanic wave energy. Considering the importance of the design of the wave-driven catamaran, its self-propulsion performance should be comprehensively analysed. However, the wave-driven catamaran’s multi-body dynamic structure, unpredictable dynamic and kinematic responses driven by waves make it difficult to analyse its self-propulsion performance. In this paper, firstly, a multi-body dynamic model is established for wave-driven catamaran. Secondly, a two-phase numerical flow field containing water and air is established. Thirdly, a numerical simulation method for the self-propulsion process of the wave-driven catamaran is proposed by combining the multi-body dynamic model with a numerical flow field. Through numerical simulation, the hydrodynamic response, including the thrust of the hydrofoils, the resistance of the hull and the sailing velocity of the wave-driven catamaran are identified and comprehensively analysed. Lastly, the accuracy of the numerical simulation results is verified through a self-propulsion test in a towing tank. In contrast with previous research, this method combines multi-body dynamics with computational fluid dynamics (CFD) to avoid errors caused by artificially setting the motion mode of the catamaran, and calculates the real velocity of the catamaran.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Smiljko Rudan ◽  
Irena Radić Rossi

Over the past decade, photogrammetric recording and virtual 3D modelling have evolved as a standard practice in documenting shipwreck sites. Exploiting the same methods, we can attempt to virtually reconstruct the dynamics of an accident leading to the creation of an archaeological site. By applying modern engineering tools capable of deploying multi-body system dynamics to simulate the damaging, capsizing and/or sinking of a ship, we can model and analyse the various possible scenarios of an incident occurring to an ancient merchantman. Subsequently, we can establish the correlation between the characteristics of the actual shipwreck site, and the outcome of the numerical simulation of the assumed scenario.


2020 ◽  
Vol 1509 ◽  
pp. 012023
Author(s):  
Bing Han ◽  
Zhenxun Gao ◽  
Chongwen Jiang

2014 ◽  
Vol 494-495 ◽  
pp. 321-327
Author(s):  
Ya Xin Huang ◽  
Bing Wang ◽  
Jun Yi Liu

In order to analyze the force of the anchor chains and the cable in the crane-system with a floating base, firstly the system is simplified to two-rigid-body model and the anchor chains in the system are in symmetric layout; then the motion response of the system as well as the force of the anchor chains and the cable are solved by use of discrete time transfer matrix method, lastly the time history curves of motion of the system and the force of the anchor chains and the cable are obtained. The results of numerical simulation show that the roll motion has greater influences on the system comparing with sway and heave, the amplitudes of sway and heave are small. Furthermore, the force of the anchor chains are mainly caused by the roll motion while the force caused by sway and heave are relatively small.


Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1670 ◽  
Author(s):  
Danchen Zhao ◽  
Yaochen Li ◽  
Yuehu Liu

Driving behavior is the main basis for evaluating the performance of an unmanned vehicle. In simulation tests of unmanned vehicles, in order for simulation results to be approximated to the actual results as much as possible, model of driving behaviors must be able to exhibit actual motion of unmanned vehicles. We propose an automatic approach of simulating dynamic driving behaviors of vehicles in traffic scene represented by image sequences. The spatial topological attributes and appearance attributes of virtual vehicles are computed separately according to the constraint of geometric consistency of sparse 3D space organized by image sequence. To achieve this goal, we need to solve three main problems: Registration of vehicle in a 3D space of road environment, vehicle’s image observed from corresponding viewpoint in the road scene, and consistency of the vehicle and the road environment. After the proposed method was embedded in a scene browser, a typical traffic scene including the intersections was chosen for a virtual vehicle to execute the driving tasks of lane change, overtaking, slowing down and stop, right turn, and U-turn. The experimental results show that different driving behaviors of vehicles in typical traffic scene can be exhibited smoothly and realistically. Our method can also be used for generating simulation data of traffic scenes that are difficult to collect.


Author(s):  
M. Datar ◽  
D. Negrut ◽  
D. Gorsich ◽  
D. Lamb

This paper outlines a methodology for determining the statistics associated with the time evolution of a nonlinear multi-body dynamic system operated under input uncertainty. The focus is on the dynamics of ground vehicle systems in environments characterized by multiple sources of uncertainty: road topography, friction coefficient at the road/tire interface and aerodynamic force loading. Drawing on parametric maximum likelihood estimation, the methodology outlined is general and can be applied to systematically study the impact of sources of uncertainty characterized herein by random processes. The proposed framework is demonstrated through a study that characterizes the uncertainty induced in the loading of the lower control arm of an SUV type vehicle by uncertainty associated with road topography.


2015 ◽  
Vol 642 ◽  
pp. 317-322
Author(s):  
Yunn Lin Hwang ◽  
Van Thuan Truong

In this paper, a synchronous approach for dynamic simulation of machine tools is described. Computer Aided Engineering (CAE) method models and analyzes a dynamical parameter prototype of machine tools. In which, the flexible structure, interactive movement, non-linear factor effects as well as characteristics of resonance frequencies and mechanical transfer function are considered. The integrating Finite Element Method (FEM), Multi-Body Dynamics (MBD) and control carries out a solution of machine tools simulation for predicting dynamic machine behaviors. The static analysis and modal analysis of components are presented with sample examples. Cybernetic characteristics like Bode diagram and such a controller are implemented for movement tailors. The synchronous approach deduces a practically technical method for machines tools.


Sign in / Sign up

Export Citation Format

Share Document