Biohydrogen Production from Lignocellulosic Feedstocks Using Extremophiles

Author(s):  
Raman Rao ◽  
Rajesh K. Sani ◽  
Sachin Kumar
2013 ◽  
Vol 2 (4) ◽  
pp. 345-359 ◽  
Author(s):  
Anniina T. Kivistö ◽  
Alessandro Ciranna ◽  
Ville P. Santala ◽  
Matti T. Karp

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
James Kirby ◽  
Gina M. Geiselman ◽  
Junko Yaegashi ◽  
Joonhoon Kim ◽  
Xun Zhuang ◽  
...  

Abstract Background Mitigation of climate change requires that new routes for the production of fuels and chemicals be as oil-independent as possible. The microbial conversion of lignocellulosic feedstocks into terpene-based biofuels and bioproducts represents one such route. This work builds upon previous demonstrations that the single-celled carotenogenic basidiomycete, Rhodosporidium toruloides, is a promising host for the production of terpenes from lignocellulosic hydrolysates. Results This study focuses on the optimization of production of the monoterpene 1,8-cineole and the sesquiterpene α-bisabolene in R. toruloides. The α-bisabolene titer attained in R. toruloides was found to be proportional to the copy number of the bisabolene synthase (BIS) expression cassette, which in turn influenced the expression level of several native mevalonate pathway genes. The addition of more copies of BIS under a stronger promoter resulted in production of α-bisabolene at 2.2 g/L from lignocellulosic hydrolysate in a 2-L fermenter. Production of 1,8-cineole was found to be limited by availability of the precursor geranylgeranyl pyrophosphate (GPP) and expression of an appropriate GPP synthase increased the monoterpene titer fourfold to 143 mg/L at bench scale. Targeted mevalonate pathway metabolite analysis suggested that 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGR), mevalonate kinase (MK) and phosphomevalonate kinase (PMK) may be pathway bottlenecks are were therefore selected as targets for overexpression. Expression of HMGR, MK, and PMK orthologs and growth in an optimized lignocellulosic hydrolysate medium increased the 1,8-cineole titer an additional tenfold to 1.4 g/L. Expression of the same mevalonate pathway genes did not have as large an impact on α-bisabolene production, although the final titer was higher at 2.6 g/L. Furthermore, mevalonate pathway intermediates accumulated in the mevalonate-engineered strains, suggesting room for further improvement. Conclusions This work brings R. toruloides closer to being able to make industrially relevant quantities of terpene from lignocellulosic biomass.


2021 ◽  
pp. 128437
Author(s):  
Chaoyang Lu ◽  
Wenzhe Li ◽  
Quanguo Zhang ◽  
Linghui Liu ◽  
Ningyuan Zhang ◽  
...  

2021 ◽  
Vol 46 (31) ◽  
pp. 16565-16590
Author(s):  
Rajesh Banu J ◽  
Mohamed Usman T M ◽  
Kavitha S ◽  
Yukesh Kannah R ◽  
Yogalakshmi K N ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 87
Author(s):  
Ali Umut Şen ◽  
Helena Pereira

In recent years, there has been a surge of interest in char production from lignocellulosic biomass due to the fact of char’s interesting technological properties. Global char production in 2019 reached 53.6 million tons. Barks are among the most important and understudied lignocellulosic feedstocks that have a large potential for exploitation, given bark global production which is estimated to be as high as 400 million cubic meters per year. Chars can be produced from barks; however, in order to obtain the desired char yields and for simulation of the pyrolysis process, it is important to understand the differences between barks and woods and other lignocellulosic materials in addition to selecting a proper thermochemical method for bark-based char production. In this state-of-the-art review, after analyzing the main char production methods, barks were characterized for their chemical composition and compared with other important lignocellulosic materials. Following these steps, previous bark-based char production studies were analyzed, and different barks and process types were evaluated for the first time to guide future char production process designs based on bark feedstock. The dry and wet pyrolysis and gasification results of barks revealed that application of different particle sizes, heating rates, and solid residence times resulted in highly variable char yields between the temperature range of 220 °C and 600 °C. Bark-based char production should be primarily performed via a slow pyrolysis route, considering the superior surface properties of slow pyrolysis chars.


2021 ◽  
Vol 288 ◽  
pp. 125447
Author(s):  
Behnam Hashemi ◽  
Shiplu Sarker ◽  
Jacob J. Lamb ◽  
Kristian M. Lien

Sign in / Sign up

Export Citation Format

Share Document