Decentralised, Off-Grid Solar Pump Irrigation Systems in Developing Countries—Are They Pro-poor, Pro-environment and Pro-women?

Author(s):  
Sam Wong
2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
D.C. Sirimewan ◽  
A.P.K.D. Mendis ◽  
Damitha Rajini ◽  
Aparna Samaraweera ◽  
Naiduwa Handi Chathuri Manjula

PurposeSustaining the irrigated agriculture, while conserving the natural eco-system, are the two main objectives of sustainable water management (SWM) in irrigation. Achieving both the objectives simultaneously is a complex task in most developing countries. This requires a holistic approach of understanding the issues in irrigation water management (IWM) from social, economic and environmental perspectives. Therefore, this paper aims to analyse the issues towards the SWM of irrigation systems in Sri Lanka to help maintain a stable relationship between the aforementioned two objectives.Design/methodology/approachQualitative interview survey was selected as the research strategy to achieve the research aim. 16 semi-structured interviews were conducted with experts in IWM sector to collect data in the Sri Lankan context. Data were analysed using code-based content analysis, based on directed approach.FindingsFindings revealed the issues in SWM in terms of efficiency of irrigation infrastructure; equity of water distribution; environmental integrity and economic acceptability. Most of the issues were related to the inefficiency towards SWM of irrigation systems. Conflicts among water users, especially the people in downstreams aggravated the problem of equity of water sharing. Depletion of groundwater and waterlogging were the major issues towards environmental integrity. Loss of water happened due to the issues in different irrigation infrastructure components hindering economic acceptability.Originality/valueTheoretical contribution includes an analysis of issues in IWM from a sustainability perspective. Practical implications include an overview of deficiencies in the SWM to generate appropriate strategies to achieve sustainability for decision-makers such as policymakers in the irrigation sector in developing countries similar to Sri Lanka.


Author(s):  
Pawel J. Zimoch ◽  
Eliott Tixier ◽  
Abhijit Joshi ◽  
A. E. Hosoi ◽  
Amos G. Winter

We use nonlinear behavior of thin-walled structures — an approach inspired by biological systems (the human airway, for example) — to address one of the most important problems facing subsistence farmers in developing countries: lack of access to inexpensive, water-efficient irrigation systems. An effective way of delivering water to crops is through a network of emitters, with up to 85% of the water delivered being absorbed by plants. However, of the 140 million hectares of cropped land in India alone, only 61 million are irrigated and just 5 million through drip irrigation. This is, in part, due to the relatively high cost of drip irrigation. The main cost comes from the requirement to pump the water at relatively high pressure (>1bar), to minimize the effect of uneven terrain and viscous losses in the network, and to ensure that each plant receives the same amount of water. Using a prototype, we demonstrate that the pressure required to drive the system can be reduced significantly by using thin-walled structures to design emitters with completely passive self-regulation that activates at approximately 0.1bar. This reduction in driving pressure could help bring the price of drip irrigation systems from several thousand dollars to approximately $300, which is within reach of small-scale farmers. Using order-of-magnitude calculations, we show that due to increased sensitivity of the proposed design to the applied pressure differential, a pressure compensating valve for drip irrigation could be built without using costly silicone membranes.


Sign in / Sign up

Export Citation Format

Share Document