scholarly journals Bio-Inspired, Low-Cost, Self-Regulating Valves for Drip Irrigation in Developing Countries

Author(s):  
Pawel J. Zimoch ◽  
Eliott Tixier ◽  
Abhijit Joshi ◽  
A. E. Hosoi ◽  
Amos G. Winter

We use nonlinear behavior of thin-walled structures — an approach inspired by biological systems (the human airway, for example) — to address one of the most important problems facing subsistence farmers in developing countries: lack of access to inexpensive, water-efficient irrigation systems. An effective way of delivering water to crops is through a network of emitters, with up to 85% of the water delivered being absorbed by plants. However, of the 140 million hectares of cropped land in India alone, only 61 million are irrigated and just 5 million through drip irrigation. This is, in part, due to the relatively high cost of drip irrigation. The main cost comes from the requirement to pump the water at relatively high pressure (>1bar), to minimize the effect of uneven terrain and viscous losses in the network, and to ensure that each plant receives the same amount of water. Using a prototype, we demonstrate that the pressure required to drive the system can be reduced significantly by using thin-walled structures to design emitters with completely passive self-regulation that activates at approximately 0.1bar. This reduction in driving pressure could help bring the price of drip irrigation systems from several thousand dollars to approximately $300, which is within reach of small-scale farmers. Using order-of-magnitude calculations, we show that due to increased sensitivity of the proposed design to the applied pressure differential, a pressure compensating valve for drip irrigation could be built without using costly silicone membranes.

Author(s):  
Fiona Grant ◽  
Carolyn Sheline ◽  
Susan Amrose ◽  
Elizabeth Brownell ◽  
Vinay Nangia ◽  
...  

Abstract Drip irrigation is a micro-irrigation technology that has been shown to conserve water and significantly increase crop yield. This technology could be particularly beneficial to the world’s estimated 500 million smallholder farmers, but drip systems tend to be financially inaccessible to this population. Drip systems require costly components including a pipe network, emitters, a pump and power system. Due to limited access to electricity, many smallholder farmers would require off-grid solutions. Designing reliable, low cost, off-grid drip irrigation systems for smallholder farms could significantly reduce the barrier to adoption. This paper builds on an integrated solar-powered drip irrigation model that was shown to improve upon an existing software. Field trials of the small-scale drip system were conducted on research farms in Jordan and Morocco for a full growing season. Data collected from these field trials are used to validate the hydraulics portion of the systems-level model. In addition, the insights gained from the field trials were formed into design requirements for future iterations of the model. These include optimizing for the system life cycle cost, as opposed to capital cost, the ability to simulate the system operation over a season, the capability to input a user’s irrigation schedule, incorporating locally-available components, and incorporating a system reliability constraint based on more detailed agronomic calculations.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1103d-1103
Author(s):  
B. W. Roberts ◽  
C. W. O'Hern

Drip irrigation systems are used extensively by commercial vegetable producers. Such systems permit precise water placement and efficient water utilization. Emitters in drip irrigation lines can easily become clogged if water supplies contain solid particles. Most farm water is not suitable for drip irrigation unless filters are used to remove solid particles from the water. Small scale or part time vegetable producers often find the cost of conventional filter systems to be a substantial financial investment.A filter which is small, lightweight, and portable was designed, built, and tested. The system is constructed from standard hardware and plumbing materials that can be purchased for less than $50. Construction time is four hours or less. The filter system works well for small scale operations that require low flow rates of water.Specifications for construction, including a materials parts list and construction details will be presented.


2005 ◽  
Vol 41 (1) ◽  
pp. 81-92 ◽  
Author(s):  
G. P. BUTLER ◽  
T. BERNET ◽  
K. MANRIQUE

Potatoes are an important cash crop for small-scale producers worldwide. The move away from subsistence to commercialized farming, combined with the rapid growth in demand for processed agricultural products in developing countries, implies that small-scale farmers and researchers alike must begin to respond to these market changes and consider post-harvest treatment as a critical aspect of the potato farming system. This paper presents and assesses a low cost potato-grading machine that was designed explicitly to enable small-scale potato growers to sort tubers by size for supply to commercial processors. The results of ten experiments reveal that the machine achieves an accuracy of sort similar to commercially available graders. The machine, which uses parallel conical rollers, has the capacity to grade different tuber shapes and to adjust sorting classes, making it suitable for locations with high potato diversity. Its relatively low cost suggests that an improved and adapted version of this machine might enhance market integration of small-scale potato producers not only in Peru, but in other developing countries as well.


2018 ◽  
Vol 144 (7) ◽  
pp. 05018003 ◽  
Author(s):  
Eric Oppong Danso ◽  
Thomas Atta-Darkwa ◽  
Finn Plauborg ◽  
Edward Benjamin Sabi ◽  
Yvonne Kugblenu-Darrah ◽  
...  

Author(s):  
Hamid Naseri ◽  
Hossein Showkati ◽  
Tadeh Zirakian ◽  
Sina Nasernia

Local support settlement is a typical differential settlement which may take place under steel storage tanks and can adversely affect the stability performance of such thin-walled structures. Considering the practical applications of the thin-walled steel storage tanks in industry, proper treatment of this problem is essential to ensure the high structural performance of such members which albeit requires detailed investigations. On this basis, this study investigates the effects of the local support settlement on the buckling stability of two tanks without and with a top stiffening ring through the experimental and numerical approaches. The considered tanks are small-scale models with the height-to-radius and radius-to-thickness (slenderness) ratios of 1.0 and 834, respectively. Both experimental and numerical results show that the behavior of the tank under the local support settlement is nonlinear. Moreover, the effectiveness of the top stiffening ring in limiting the buckling deformation and improving the buckling performance of the tank is demonstrated in this study.


2007 ◽  
Vol 2 (1) ◽  
pp. 45-51 ◽  
Author(s):  
Pinaki Mondal . ◽  
R.K. Biswas . ◽  
V.K. Tewari . ◽  
K. Kundu . ◽  
Manisha Basu .

2011 ◽  
Vol 325 ◽  
pp. 508-513 ◽  
Author(s):  
Peng Zhang ◽  
Bo Wang ◽  
Mark J. Jackson ◽  
Xing Mao

Current requirements for producing highly precise and ultra-smooth micro structured surfaces of small parts are proposed in certain situations. The following question arises: how to make a highly precise and ultra-smooth micro-structured surface with high efficiency and low cost? Novel desktop lapping and polishing devices should be developed to satisfy these requirements. In order to improve the surface topography and remove the surface damaged layer of a highly precise and ultra-smooth micro thin-walled structure after milling with the width of 150 μm and the depth of 10 μm, a novel lapping desktop device is designed and developed. There are two key points in the design of the lapping desktop device: one is the vertical coupled macro-micro movement axis; the other is the fixture with a thin and flexible hinge structure, which has the capability of measuring both force and displacement as a double-feedback sensor to control both the micro lapping force and the depth of lapping. The experimental results show that the surface topography of the micro thin-walled structured surface is much improved after lapping, and that the three-dimensional surface roughness decreased from 329 nm to 82.2 nm.


2003 ◽  
Vol 9 (1_suppl) ◽  
pp. 44-47 ◽  
Author(s):  
Richard Wootton

summary Email has been used for some years as a low-cost telemedicine medium to provide support for developing countries. However, all operations have been relatively small scale and fairly labour intensive to administer. A scalable, automatic message-routing system was constructed which automates many of the tasks. During a four-month study period in 2002, 485 messages were processed automatically. There were 31 referrals from eight hospitals in three countries. These referrals were handled by 25 volunteer specialists from a panel of 42. Two system operators, located 10 time zones apart, managed the system. The median time from receipt of a new referral to its allocation to a specialist was 1.0 days (interquartile range 0.7–2.4). The median interval between allocation and first reply was 0.7 days (interquartile range 0.3–2.3). Automatic message handling solves many of the problems of manual email telemedicine systems and represents a potentially scalable way of doing low-cost telemedicine in the developing world.


Author(s):  
Seiji Engelkemier ◽  
Fiona Grant ◽  
Jordan Landis ◽  
Carolyn Sheline ◽  
Hannah Varner ◽  
...  

Abstract In low income countries, existing drip irrigation systems are cost prohibitive to many smallholder farmers. Companies are working to develop efficient, low-cost irrigation systems by using technologies such as positive displacement (PD) pumps and pressure compensating (PC) emitters. However, these two technologies have not been paired in an efficient and cost-effective manner. Here we describe a proof-of-concept pump control algorithm that demonstrates the feasibility of exploiting the physical relationship between the input electrical power to a PD pump and the hydraulic behavior of a system of PC emitters in order to determine the optimal pump operating point. The development and validation of this control algorithm was conducted in partnership with the Kenya-based irrigation company SunCulture. This control method is expected to reduce cost, improve system efficiency, and increase accessibility of irrigation systems to smallholder farmers.


Sign in / Sign up

Export Citation Format

Share Document