Bridging the Gap Between Seismology and Engineering: Towards Real-Time Damage Assessment

Author(s):  
Stefano Parolai ◽  
Michael Haas ◽  
Massimiliano Pittore ◽  
Kevin Fleming
Keyword(s):  
2021 ◽  
pp. 147592172199621
Author(s):  
Enrico Tubaldi ◽  
Ekin Ozer ◽  
John Douglas ◽  
Pierre Gehl

This study proposes a probabilistic framework for near real-time seismic damage assessment that exploits heterogeneous sources of information about the seismic input and the structural response to the earthquake. A Bayesian network is built to describe the relationship between the various random variables that play a role in the seismic damage assessment, ranging from those describing the seismic source (magnitude and location) to those describing the structural performance (drifts and accelerations) as well as relevant damage and loss measures. The a priori estimate of the damage, based on information about the seismic source, is updated by performing Bayesian inference using the information from multiple data sources such as free-field seismic stations, global positioning system receivers and structure-mounted accelerometers. A bridge model is considered to illustrate the application of the framework, and the uncertainty reduction stemming from sensor data is demonstrated by comparing prior and posterior statistical distributions. Two measures are used to quantify the added value of information from the observations, based on the concepts of pre-posterior variance and relative entropy reduction. The results shed light on the effectiveness of the various sources of information for the evaluation of the response, damage and losses of the considered bridge and on the benefit of data fusion from all considered sources.


2020 ◽  
Vol 26 (3) ◽  
pp. 04020019
Author(s):  
Thomas Androutselis ◽  
Md Tawfiq Sarwar ◽  
Ugur Eker ◽  
Panagiotis Ch. Anastasopoulos ◽  
Lampros Sakellariadis ◽  
...  

1987 ◽  
Vol 1987 (1) ◽  
pp. 547-551 ◽  
Author(s):  
R. Glenn Ford ◽  
Gary W. Page ◽  
Harry R. Carter

ABSTRACT From an aesthetic and damage assessment standpoint, the loss of seabirds may be one of the more important results of a marine oil spill. Assessment of the actual numbers of seabirds killed is difficult because the bodies of dead or incapacitated seabirds are often never found or recorded. We present a computer methodology that estimates the number of birds that come in contact with an oil spill and partitions these birds among four possible fates: (1) swimming or flying ashore under their own power; (2) carried out to sea by winds and currents; (3) carried inshore, but lost before being beached; and (4) beached by winds and currents. Beached birds are further divided into those that are recovered and those that are not. The accuracy of the methodology is examined using data for two recent spills in central California, each of which resulted in the beachings of large numbers of birds. The methodology also has potential application to real-time emergency response by predicting when and where the greatest numbers of bird beachings will occur.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Jesús Morales-Valdez ◽  
Luis Alvarez-Icaza ◽  
José A. Escobar

Aging of buildings during their service life has attracted the attention of researchers on structural health monitoring (SHM). This paper is related with detecting damage in building structures at the earliest possible stage during seismic activity to facilitate decision-making on evacuation before physical inspection is possible. For this, a simple method for damage assessment is introduced to identify the damage story of multistory buildings from acceleration measurements under a wave propagation approach. In this work, damage is assumed as reduction in shear wave velocities and changes in damping ratios that are directly related with stiffness loss. Most damage detection methods are off-line processes; this is not the case with this method. First, a real-time identification system is introduced to estimate the current parameters to be compared with nominal values to detect any changes in the characteristics that may indicate damage in the building. In addition, this identification system is robust to constant disturbances and measurement noise. The time needed to complete parameter identification is shorter compared to the typically wave method, and the damage assessment can keep up with the data flow in real time. Finally, using a robust threshold, postprocess of the compared signal is performed to find the location of the possible damage. The performance of the proposed method is demonstrated through experiments on a reduced-scale five-story building, showing the ability of the proposed method to improve early stage structural health monitoring.


2008 ◽  
Vol 33-37 ◽  
pp. 285-290
Author(s):  
Yong Hong ◽  
Gao Ping Wang ◽  
Byeong Hee Han ◽  
Dong Pyo Hong ◽  
Young Moon Kim

Beam structures are a common form in many large structures, and therefore the real-time condition monitoring and active control of beams will improve the reliability and safety of many structures. This paper presents a damage assessment method which combines the impedance method and guided wave method. The combination enabled to improve the damage detection efficiency. The impedance method is used first to detect whether the damage occurs or not and judge the damage extent. The guided wave then is introduced to accurately localize damages. The improved method provides possibility for more accurately identifying and localization damages compared to that conventional method. A powerful wavelet transform is used to extract the signals efficiently. Additionally, with using the general function generator to excite the piezoceramic (PZT) patches to generate the guided wave, the guided wave propagates along with the beam structures with PZT patches bonded, and the real-time signals are recorded. Damages are indicated by a change of response signals when compared with a template undamaged condition. The wave attenuation and mode conversion is sufficient to detect various types of defects. The results show considerable ability for identifying and localization of the simulated damages.


Author(s):  
Norman Kerle ◽  
Rob Stekelenburg ◽  
Frank van den Heuvel ◽  
Ben Gorte

Sign in / Sign up

Export Citation Format

Share Document