Plant Defense and Insect Adaptation with Reference to Secondary Metabolites

Author(s):  
Abdul Rasheed War ◽  
Abdul Ahad Buhroo ◽  
Barkat Hussain ◽  
Tariq Ahmad ◽  
Ramakrishnan M. Nair ◽  
...  
2017 ◽  
Vol 114 (28) ◽  
pp. E5712-E5720 ◽  
Author(s):  
Deepa Khare ◽  
Hyunju Choi ◽  
Sung Un Huh ◽  
Barbara Bassin ◽  
Jeongsik Kim ◽  
...  

Plant pathogens cause huge yield losses. Plant defense often depends on toxic secondary metabolites that inhibit pathogen growth. Because most secondary metabolites are also toxic to the plant, specific transporters are needed to deliver them to the pathogens. To identify the transporters that function in plant defense, we screened Arabidopsis thaliana mutants of full-size ABCG transporters for hypersensitivity to sclareol, an antifungal compound. We found that atabcg34 mutants were hypersensitive to sclareol and to the necrotrophic fungi Alternaria brassicicola and Botrytis cinerea. AtABCG34 expression was induced by A. brassicicola inoculation as well as by methyl-jasmonate, a defense-related phytohormone, and AtABCG34 was polarly localized at the external face of the plasma membrane of epidermal cells of leaves and roots. atabcg34 mutants secreted less camalexin, a major phytoalexin in A. thaliana, whereas plants overexpressing AtABCG34 secreted more camalexin to the leaf surface and were more resistant to the pathogen. When treated with exogenous camalexin, atabcg34 mutants exhibited hypersensitivity, whereas BY2 cells expressing AtABCG34 exhibited improved resistance. Analyses of natural Arabidopsis accessions revealed that AtABCG34 contributes to the disease resistance in naturally occurring genetic variants, albeit to a small extent. Together, our data suggest that AtABCG34 mediates camalexin secretion to the leaf surface and thereby prevents A. brassicicola infection.


Author(s):  
Abdul Rasheed War ◽  
Abdul Ahad Buhroo ◽  
Barkat Hussain ◽  
Tariq Ahmad ◽  
Ramakrishnan M. Nair ◽  
...  

2012 ◽  
Vol 32 (1) ◽  
pp. 216-232 ◽  
Author(s):  
Arti Bartwal ◽  
Rakesh Mall ◽  
Pushpa Lohani ◽  
S. K. Guru ◽  
Sandeep Arora

Author(s):  
Wasinee Pongprayoon ◽  
Thanapoom Siringam ◽  
Atikorn Panya ◽  
Sittiruk Roytrakul

Chitosan, a copolymer of N-acetyl-D-glucosamine and D-glucosamine, which possesses properties that make it useful in various fields, is produced by the deacetylation of chitin derivatives. It is used in agriculture as a biostimulant for plant growth and protection, it also induces several responsive genes, proteins, and secondary metabolites in plants. Chitosan elicits a signal transduction pathway and transduces secondary molecules such as hydrogen peroxide and nitric oxide. Under biotic stress, chitosan can stimulate phytoalexins, pathogenesis-related proteins, and proteinase inhibitors. Pretreatment of chitosan before exposure to abiotic stresses (drought, salt, and heat) induces plant growth, production of antioxidant enzymes, secondary metabolites, and abscisic acid (ABA). It also causes changes in physiology, biochemistry, and molecular biology of the plant cells. However, plant responses depend on different chitosan-based structures, concentrations, species, and developmental stages. This review collects updated information on chitosan applications, particularly in plant defense responses to biotic and abiotic stress conditions.


Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5189
Author(s):  
Michela Alfieri ◽  
Iride Mascheretti ◽  
Roméo A. Dougué Kentsop ◽  
Roberto Consonni ◽  
Franca Locatelli ◽  
...  

Lignans are the main secondary metabolites synthetized by Linum species as plant defense molecules. They are also valuable for human health, in particular, for their potent antiviral and antineoplastic properties. In this study, the adventitious root cultures of three Linum species (L. flavum, L. mucronatum and L. dolomiticum) were developed to produce aryltetralin lignans. The effect of two elicitors, methyl jasmonate and coronatine, on aryltetralin lignans production was also evaluated. The adventitious root cultures from L. dolomiticum were obtained and analyzed for the first time and resulted as the best producer for all the aryltetralins highlighted in this system: Podophyllotoxin, 6-methoxypodophyllotoxin and 6-methoxypodophyllotoxin-7-O-β-glucoside, the last showing a productivity of 92.6 mg/g DW. The two elicitors differently affected the production of the 6-methoxypodophyllotoxin and 6-methoxypodophyllotoxin-7-O-β-glucoside.


Author(s):  
Mubasher Hussain ◽  
Muhammad Qasim ◽  
Bamisope Steve Bamisile ◽  
Liande Wang

The diamondback moth (DBM), Plutella xylostella L. (Lepidoptera: Plutellidae) is very destructive crucifers specialized pest that has resulted in significant crop losses worldwide. The pest is well attracted to glucosinolate-containing crucifers such as; Barbarea vulgaris (Brassicaceae), and generally to other plants in the genus Barbarea. B. vulgaris on their part, build up resistance against DBM and other herbivorous insects using glucosinolates; that are plant secondary metabolites used in plant defense–contained only in plants of the order Brassicales. Aside glucosinolates, plants in this genus Barbarea (Brassicaceae) also contain saponins; which is toxic to insects and act as feeding deterrents for plant herbivores, most importantly, DBM, as it was found to prevent the survival of DBM larvae on the plant. Saponins are plant secondary metabolites have been established in higher concentrations in younger in contrast to older leaves within the same plant. Previous studies have found a relationship between ontogenetical changes in the host plant’s saponin content and attraction/resistance to P. xylostella. The younger leaves recorded higher concentrations of glucosinolates and saponins, which naturally attracts the plant herbivores. DBM was reported to have evolved mechanisms to avoid the toxicity of the former. The plant-herbivore had adapted glucosinolates for host plant recognition, feeding and oviposition stimulants. Despite the adaptation for oviposition by P. xylostella adults, larvae of the insect cannot survive on the same plant. An example is in some varieties of B. vulgaris. The triterpenoid saponins which act as feeding deterrents in larvae are responsible for this direct defense mechanism against P. xylostella. In the future, trials by plant breeders could aim at transferring this insect resistance to other crops. The previous trials had limited because of lack of knowledge on the biosynthetic pathways and regulatory networks of saponins. Herein, we discussed exclusively; saponins mediated plant defense mechanisms against the DBM.


Sign in / Sign up

Export Citation Format

Share Document