Heat Shock-Induced Transcriptional and Translational Arrest in Mammalian Cells

Author(s):  
Anshika Goenka ◽  
Rashmi Parihar ◽  
Subramaniam Ganesh
2010 ◽  
Vol 192 (7) ◽  
pp. 1999-2005 ◽  
Author(s):  
Amalia Porta ◽  
Annamaria Eletto ◽  
Zsolt Török ◽  
Silvia Franceschelli ◽  
Attila Glatz ◽  
...  

ABSTRACT So far attenuation of pathogens has been mainly obtained by chemical or heat treatment of microbial pathogens. Recently, live attenuated strains have been produced by genetic modification. We have previously demonstrated that in several prokaryotes as well as in yeasts and mammalian cells the heat shock response is controlled by the membrane physical state (MPS). We have also shown that in Salmonella enterica serovar Typhimurium LT2 (Salmonella Typhimurium) overexpression of a Δ12-desaturase gene alters the MPS, inducing a sharp impairment of transcription of major heat shock genes and failure of the pathogen to grow inside macrophage (MΦ) (A. Porta et al., J. Bacteriol. 192:1988-1998, 2010). Here, we show that overexpression of a homologous Δ9-desaturase sequence in the highly virulent G217B strain of the human fungal pathogen Histoplasma capsulatum causes loss of its ability to survive and persist within murine MΦ along with the impairment of the heat shock response. When the attenuated strain of H. capsulatum was injected in a mouse model of infection, it did not cause disease. Further, treated mice were protected when challenged with the virulent fungal parental strain. Attenuation of virulence in MΦ of two evolutionarily distant pathogens was obtained by genetic modification of the MPS, suggesting that this is a new method that may be used to produce attenuation or loss of virulence in both other intracellular prokaryotic and eukaryotic pathogens. This new procedure to generate attenuated forms of pathogens may be used eventually to produce a novel class of vaccines based on the genetic manipulation of a pathogen's membrane fluid state and stress response.


2019 ◽  
Vol 30 (4) ◽  
pp. 478-490 ◽  
Author(s):  
Jie Li ◽  
Danming Tang ◽  
Stephen C. Ireland ◽  
Yanzhuang Wang

In mammalian cells, the Golgi reassembly stacking protein of 65 kDa (GRASP65) has been implicated in both Golgi stacking and ribbon linking by forming trans-oligomers. To better understand its function and regulation, we used biochemical methods to identify the DnaJ homolog subfamily A member 1 (DjA1) as a novel GRASP65-binding protein. In cells, depletion of DjA1 resulted in Golgi fragmentation, short and improperly aligned cisternae, and delayed Golgi reassembly after nocodazole washout. In vitro, immunodepletion of DjA1 from interphase cytosol reduced its activity to enhance GRASP65 oligomerization and Golgi membrane fusion, while adding purified DjA1 enhanced GRASP65 oligomerization. DjA1 is a cochaperone of Heat shock cognate 71-kDa protein (Hsc70), but the activity of DjA1 in Golgi structure formation is independent of its cochaperone activity or Hsc70, rather, through DjA1-GRASP65 interaction to promote GRASP65 oligomerization. Thus, DjA1 interacts with GRASP65 to enhance Golgi structure formation through the promotion of GRASP65 trans-oligomerization.


2012 ◽  
Vol 302 (3) ◽  
pp. H506-H514 ◽  
Author(s):  
Qingbo Xu ◽  
Bernhard Metzler ◽  
Marjan Jahangiri ◽  
Kaushik Mandal

In response to stress stimuli, mammalian cells activate an ancient signaling pathway leading to the transient expression of heat shock proteins (HSPs). HSPs are a family of proteins serving as molecular chaperones that prevent the formation of nonspecific protein aggregates and assist proteins in the acquisition of their native structures. Physiologically, HSPs play a protective role in the homeostasis of the vessel wall but have an impact on immunoinflammatory processes in pathological conditions involved in the development of atherosclerosis. For instance, some members of HSPs have been shown to have immunoregulatory properties and modification of innate and adaptive response to HSPs, and can protect the vessel wall from the disease. On the other hand, a high degree of sequence homology between microbial and mammalian HSPs, due to evolutionary conservation, carries a risk of misdirected autoimmunity against HSPs expressed on the stressed cells of vascular endothelium. Furthermore, HSPs and anti-HSP antibodies have been shown to elicit production of proinflammatory cytokines. Potential therapeutic use of HSP in prevention of atherosclerosis involves achieving optimal balance between protective and immunogenic effects of HSPs and in the progress of research on vaccination. In this review, we update the progress of studies on HSPs and the integrity of the vessel wall, discuss the mechanism by which HSPs exert their role in the disease development, and highlight the potential clinic translation in the research field.


1994 ◽  
Vol 14 (8) ◽  
pp. 5309-5317
Author(s):  
S P Murphy ◽  
J J Gorzowski ◽  
K D Sarge ◽  
B Phillips

Two distinct murine heat shock transcription factors, HSF1 and HSF2, have been identified. HSF1 mediates the transcriptional activation of heat shock genes in response to environmental stress, while the function of HSF2 is not understood. Both factors can bind to heat shock elements (HSEs) but are maintained in a non-DNA-binding state under normal growth conditions. Mouse embryonal carcinoma (EC) cells are the only mammalian cells known to exhibit HSE-binding activity, as determined by gel shift assays, even when maintained at normal physiological temperatures. We demonstrate here that the constitutive HSE-binding activity present in F9 and PCC4.aza.R1 EC cells, as well as a similar activity found to be present in mouse embryonic stem cells, is composed predominantly of HSF2. HSF2 in F9 EC cells is trimerized and is present at higher levels than in a variety of nonembryonal cell lines, suggesting a correlation of these properties with constitutive HSE-binding activity. Surprisingly, transcription run-on assays suggest that HSF2 in unstressed EC cells does not stimulate transcription of two putative target genes, hsp70 and hsp86. Genomic footprinting analysis indicates that HSF2 is not bound in vivo to the HSE of the hsp70 promoter in unstressed F9 EC cells, although HSF2 is present in the nucleus and the promoter is accessible to other transcription factors and to HSF1 following heat shock. Thus trimerization and nuclear localization of HSF2 do not appear to be sufficient for in vivo binding of HSF2 to the HSE of the hsp70 promoter in unstressed F9 EC cells.


2008 ◽  
Vol 86 (1) ◽  
pp. 37-45 ◽  
Author(s):  
Aliakbar Taherian ◽  
Patrick H. Krone ◽  
Nick Ovsenek

Hsp90 chaperone complexes function in assembly, folding, and activation of numerous substrates. The 2 vertebrate homologues encoded by the genes hsp90a and hsp90b are differentially expressed in embryonic and adult tissues and during stress; however, it is not known whether they possess identical functional activities in chaperone complexes. This question was addressed by examining potential differences between the Hsp90 isoforms with respect to both cochaperone and substrate interactions. Epitope-tagged proteins were expressed in mammalian cells or Xenopus oocytes and subjected to immunoprecipitation with an array of cochaperones. Both isoforms were shown to participate equally in multichaperone complexes, and no significant differences in cochaperone distribution were observed. The substrates Raf-1, HSF1, Cdc37, and MEK1 interacted with both Hsp90α and Hsp90β, and the relative patterns of these interactions were not affected by heat shock. The substrate kinases c-Src, CKIIB, A-raf, and Erk interacted with both isoforms; however, significantly more Hsp90α was recovered after heat shock. The data demonstrate that Hsp90α and Hsp90β exhibit similar interactions with cochaperones, but significantly different behaviors with respect to substrate interactions under stress conditions. These results reveal both functional similarities and key functional differences in the individual members of this protein family.


2018 ◽  
Vol 293 (43) ◽  
pp. 16596-16607 ◽  
Author(s):  
Jackson B. Trotman ◽  
Bernice A. Agana ◽  
Andrew J. Giltmier ◽  
Vicki H. Wysocki ◽  
Daniel R. Schoenberg

The N7-methylguanosine cap is added in the nucleus early in gene transcription and is a defining feature of eukaryotic mRNAs. Mammalian cells also possess cytoplasmic machinery for restoring the cap at uncapped or partially degraded RNA 5′ ends. Central to both pathways is capping enzyme (CE) (RNA guanylyltransferase and 5′-phosphatase (RNGTT)), a bifunctional, nuclear and cytoplasmic enzyme. CE is recruited to the cytoplasmic capping complex by binding of a C-terminal proline-rich sequence to the third Src homology 3 (SH3) domain of NCK adapter protein 1 (NCK1). To gain broader insight into the cellular context of cytoplasmic recapping, here we identified the protein interactome of cytoplasmic CE in human U2OS cells through two complementary approaches: chemical cross-linking and recovery with cytoplasmic CE and protein screening with proximity-dependent biotin identification (BioID). This strategy unexpectedly identified 66 proteins, 52 of which are RNA-binding proteins. We found that CE interacts with several of these proteins independently of RNA, mediated by sequences within its N-terminal triphosphatase domain, and we present a model describing how CE-binding proteins may function in defining recapping targets. This analysis also revealed that CE is a client protein of heat shock protein 90 (HSP90). Nuclear and cytoplasmic CEs were exquisitely sensitive to inhibition of HSP90, with both forms declining significantly following treatment with each of several HSP90 inhibitors. Importantly, steady-state levels of capped mRNAs decreased in cells treated with the HSP90 inhibitor geldanamycin, raising the possibility that the cytotoxic effect of these drugs may partially be due to a general reduction in translatable mRNAs.


1987 ◽  
Vol 7 (9) ◽  
pp. 3049-3056
Author(s):  
J D Richter ◽  
H C Hurst ◽  
N C Jones

The Escherichia coli-expressed adenovirus E1A 13S mRNA product injected into Xenopus oocytes was active, as assessed by its ability to stimulate the transcription of an injected gene which is normally responsive to E1A in mammalian cells. In the presence of the protein synthesis inhibitors pactamycin or cycloheximide, E1A was correctly posttranslationally modified (phosphorylated) and transported to the nucleus; but it failed to stimulate the transcription of an injected gene containing the human heat shock protein 70 promoter. The basal (unstimulated) level of transcription of the gene was unaffected by these inhibitors. If oocytes were cultured in the presence of cycloheximide after E1A stimulated transcription, however, the high level of transcription was maintained for several hours without new protein synthesis. Results of competition studies with the same promoter (the heat shock protein 70 promoter) linked to two marked genes demonstrated that once the induction of transcription by E1A took place, the stimulated levels of transcription were maintained, even when they were challenged with excess competitor DNA. Results of these studies suggest that E1A requires the synthesis of a cellular protein to form a stable transcription complex.


Sign in / Sign up

Export Citation Format

Share Document