Performance-Based Evaluation of Hydrocarbon Steel Pipes Under Internal Pressure

Author(s):  
Ferit Cakir ◽  
Eren Uckan ◽  
Bulent Akbas ◽  
Bilge Siyahi ◽  
Nuri Kanli ◽  
...  
Author(s):  
S. A. Karamanos ◽  
K. P. Andreadakis ◽  
A. M. Gresnigt

The paper examines the denting response of tubular members and pipes subjected to lateral (transverse) quasi-static loading, in the presence of internal pressure. Tubes are modeled with nonlinear shell finite elements, and the numerical results are in good agreement with available experimental data. Using the numerical tools, a parametric study is conducted to examine the effects of pressure level, as well as those of denting device size and pipe end conditions. It is mainly concluded that for a given denting displacement, the presence of internal pressure increases significantly the corresponding denting force. A simplified two-dimensional heuristic model is also adopted, which yields closed-form expressions for the denting force. The model equations are in fairly good agreement with the test results and illustrate pipe denting response in an elegant manner.


Author(s):  
Peter Schaumann ◽  
Christian Keindorf ◽  
Henning Bru¨ggemann

The currently valid worldwide standards allow for taking into consideration plastic deformations in order to achieve a higher degree of utilization. The maximum plastic strains, which can be allowed for steel pipes subjected to internal pressure and additional loads, are particularly interesting. In this paper results of investigations on the elasto-plastic bearing behavior of steel pipelines subjected to internal pressure and bending are presented. Four-point bending tests on eight steel pipes were carried out in order to make the buckling analysis in the elasto-plastic range possible. Finite-element-models were checked by test results for the application on buried pipelines. Taking into account bedding conditions of the pipeline in the soil was made possible. Furthermore, an analytical method based on the differential equation for beams with longitudinal tensile force and variable bending stiffness was developed. It is suitable to determine the elasto-plastic bearing capacity for internal pressure and bending. The collapse due to plastic shell buckling is considered by a limit criterion based on critical strains.


1996 ◽  
Vol 118 (4) ◽  
pp. 464-471 ◽  
Author(s):  
N. Jones ◽  
R. S. Birch

This article presents some experimental data recorded from 54 impact tests on pressurized mild steel pipes. The pipes were fully clamped across a span which was ten times the outside pipe diameter of 60 mm. The pipes had a wall thickness of 1.70 mm and were impacted laterally by a rigid wedge indenter at the mid-span and one-quarter-span positions. The impact velocities ranged up to 13.6 m/s and caused large inelastic indentations for the lower values and at higher values a loss of integrity which could occur underneath the indenter and/or at an end support. The critical values for the two failure energies were obtained for a range of internal gas pressures.


2012 ◽  
Vol 134 (3) ◽  
Author(s):  
M. Foroutan ◽  
M. E. Aalami-Aleagha ◽  
S. Feli ◽  
S. Nikabadi

In this paper, the effect of hydrostatic testing internal pressure on the residual stresses of circumferentially butt-welded steel pipes is investigated by a three dimensional finite elements simulation based on ansys11 code. Residual stresses due to welding process are calculated by an uncoupled analysis. In this analysis, at first, a transient heat transfer problem is solved. Output of this analysis is temperature distribution history .This output is used as the structural analysis load. Output of structural analysis is welding residual stresses. The most important part of such simulations is modeling of heat power source. In the present work, heat power of welding electrode is simulated by a moving heat source with Gaussian distribution on a spherical domain. The presented model is used for calculation of residual stresses in an 8 in. three pass butt-welded steel pipe. Finally, the effects of hydrostatic testing internal pressure on the residual stresses are studied by the proposed model. The results obtained from this study show that the hydrostatic testing pressure has a significant effect on residual stresses.


Author(s):  
Celal Cakiroglu ◽  
Kajsa Duke ◽  
Marwan El-Rich ◽  
Samer Adeeb ◽  
J. J. Roger Cheng ◽  
...  

The design of steel pipelines against longitudinal loading induced by soil movement and temperature requires an understanding of the strain demand induced by the environment in comparison with the strain resistance of the pipes. Girth weld flaws have been identified as the potential location of failure under longitudinal tensile strains due to being the least ductile. Strain based design for the prediction of the longitudinal tensile strain capacity of steel pipes have been extensively studied by Wang, et al and included in the Canadian standards association code of practice CSA Z662.11 [1]. The extensive track record of tests have culminated into two sets of equations for the critical strain in girth welded pipes with surface breaking and buried defects as functions of the different pipe and flaw parameters. The CSA Z662.11 strain capacity equations were developed using wide plate tests with the obvious limitation of the inability to consider the effect of the internal pressure of the pipe. However, recent studies by Wang et al led to the development of a new set of equations that predict the tensile strain capacity for pipes with an internal pressure factor of 0.72. This paper analyses the two critical strain equations in CSA Z662-11 to understand the effect of different girth weld flaw and pipe parameters on the expected behavior of pipes. Also the critical strain equations developed in [2]have been analysed and compared to the equations in CSA Z662-11. Using the equations in CSA Z662-11, a 34 and 36 full factorial experimental design was conducted for the planar surface-breaking defect and the planar buried defect respectively. For the case of surface breaking defects the dependence of the tensile strain capacity (εtcrit) on apparent CTOD toughness (δ), ratio of defect height to pipe wall thickness (η), ratio of yield strength to tensile strength (λ) and the ratio of defect length to pipe wall thickness (ξ) has been studied. εtcrit has been evaluated at the maximum, minimum and intermediate values of each parameter according to the allowable ranges given in the code which resulted in the evaluation of εtcrit for 81 different combinations of the parameters. The average value of εtcrit at the maximum, minimum and middle value of each parameter has been calculated. The visualization of the results showed that η, δ and ξ have the most significant effect on εtcrit among the four parameters for the case of surface breaking defect. Similarly for buried defects the dependence of εtcrit on δ, η, λ, ξ, and the pipe wall thickness (t) has been studied. The evaluation of εtcrit for all possible combinations of the maximum, intermediate and minimum values of the 6 parameters resulted in εtcrit values for 729 different combinations. The variation of the average εtcrit over the maximum, intermediate and minimum values of the parameters showed that δ, ψ, ξ and η are the parameters having the greatest effect on εtcrit for the case of a buried defect. Further investigations could be carried out to determine suitable upper and lower bounds for the parameters for which no bounded range is defined in the CSA Z662-11 code.


2018 ◽  
Vol 203 ◽  
pp. 01023 ◽  
Author(s):  
Jonathan Emmanuel Edmund ◽  
Zahiraniza binti Mustaffa

Composite pipeline can drastically reduce losses caused by corrosion that occurs in carbon steel pipes in the industry. Multiple numerical testing has been conducted to determine maximum stress and strain a Reinforced Thermoplastic Pipe (RTP) can withstand before hitting failure. Not many studies were done to find the maximum stress intensity a defected RTP can resist before failing. Objectives are to validate the numerical model for Reinforced Thermoplastic Pipeline (RTP) to industry standard and to analyze the maximum stress intensity of Reinforced Thermoplastic Pipes (RTP) can withstand with various size of defects under constant pressure and incremental internal pressure with constant crack defect. Results were, under constant internal pressure of 6 MPa, the pipe will fail with a defect length of 2.05mm and at constant design pressure of 10 MPa, the pipe will fail with a defect length of 0.3mm. At constant crack depth and width, crack tip propagation (failure) is more dependent on internal pressure rather than crack length. However, when comparing the severity of crack depth to internal pressure, crack depth is the major cause of failure.


Sign in / Sign up

Export Citation Format

Share Document