Influence of Girth Weld Flaw and Pipe Parameters on the Critical Longitudinal Strain of Steel Pipes

Author(s):  
Celal Cakiroglu ◽  
Kajsa Duke ◽  
Marwan El-Rich ◽  
Samer Adeeb ◽  
J. J. Roger Cheng ◽  
...  

The design of steel pipelines against longitudinal loading induced by soil movement and temperature requires an understanding of the strain demand induced by the environment in comparison with the strain resistance of the pipes. Girth weld flaws have been identified as the potential location of failure under longitudinal tensile strains due to being the least ductile. Strain based design for the prediction of the longitudinal tensile strain capacity of steel pipes have been extensively studied by Wang, et al and included in the Canadian standards association code of practice CSA Z662.11 [1]. The extensive track record of tests have culminated into two sets of equations for the critical strain in girth welded pipes with surface breaking and buried defects as functions of the different pipe and flaw parameters. The CSA Z662.11 strain capacity equations were developed using wide plate tests with the obvious limitation of the inability to consider the effect of the internal pressure of the pipe. However, recent studies by Wang et al led to the development of a new set of equations that predict the tensile strain capacity for pipes with an internal pressure factor of 0.72. This paper analyses the two critical strain equations in CSA Z662-11 to understand the effect of different girth weld flaw and pipe parameters on the expected behavior of pipes. Also the critical strain equations developed in [2]have been analysed and compared to the equations in CSA Z662-11. Using the equations in CSA Z662-11, a 34 and 36 full factorial experimental design was conducted for the planar surface-breaking defect and the planar buried defect respectively. For the case of surface breaking defects the dependence of the tensile strain capacity (εtcrit) on apparent CTOD toughness (δ), ratio of defect height to pipe wall thickness (η), ratio of yield strength to tensile strength (λ) and the ratio of defect length to pipe wall thickness (ξ) has been studied. εtcrit has been evaluated at the maximum, minimum and intermediate values of each parameter according to the allowable ranges given in the code which resulted in the evaluation of εtcrit for 81 different combinations of the parameters. The average value of εtcrit at the maximum, minimum and middle value of each parameter has been calculated. The visualization of the results showed that η, δ and ξ have the most significant effect on εtcrit among the four parameters for the case of surface breaking defect. Similarly for buried defects the dependence of εtcrit on δ, η, λ, ξ, and the pipe wall thickness (t) has been studied. The evaluation of εtcrit for all possible combinations of the maximum, intermediate and minimum values of the 6 parameters resulted in εtcrit values for 729 different combinations. The variation of the average εtcrit over the maximum, intermediate and minimum values of the parameters showed that δ, ψ, ξ and η are the parameters having the greatest effect on εtcrit for the case of a buried defect. Further investigations could be carried out to determine suitable upper and lower bounds for the parameters for which no bounded range is defined in the CSA Z662-11 code.

Author(s):  
Ming Liu ◽  
Yong-Yi Wang ◽  
Yaxin Song ◽  
David Horsley ◽  
Steve Nanney

This is the second paper in a three-paper series related to the development of tensile strain models. The fundamental basis of the models [1] and evaluation of the models against experiment data [2] are presented in two companion papers. This paper presents the structure and formulation of the models. The philosophy and development of the multi-tier tensile strain models are described. The tensile strain models are applicable for linepipe grades from X65 to X100 and two welding processes, i.e., mechanized GMAW and FCAW/SMAW. The tensile strain capacity (TSC) is given as a function of key material properties and weld and flaw geometric parameters, including pipe wall thickness, girth weld high-low misalignment, pipe strain hardening (Y/T ratio), weld strength mismatch, girth weld flaw size, toughness, and internal pressure. Two essential parts of the tensile strain models are the crack driving force and material’s toughness. This paper covers principally the crack driving force. The significance and determination of material’s toughness are covered in the companion papers [1,2].


Author(s):  
Celal Cakiroglu ◽  
Samer Adeeb ◽  
J. J. Roger Cheng ◽  
Millan Sen

Pipelines can be subjected to significant amounts of tensile forces due to geotechnical movements like slope instabilities and seismic activities as well as due to frost heave and thaw cycles in arctic regions. The tensile strain capacity εtcrit of pipelines is crucial in the prediction of rupture and loss of containment capability in these load cases. Currently the Oil and Gas Pipeline Systems code CSA Z662-11 0 contains equations for the prediction of εtcrit as a function of geometry and material properties of the pipeline. These equations resulted from extensive experimental and numerical studies carried out by Wang et al [2]–[6] using curved wide plate tests on pipes having grades X65 and higher. Verstraete et al 0 conducted curved wide plate tests at the University of Ghent which also resulted in tensile strain capacity prediction methods and girth weld flaw acceptability criteria. These criteria are included in the European Pipeline Research Group (EPRG) Tier 2 guidelines. Furthermore Verstrate et al 0 introduced a pressure correction factor of 0.5 in order to include the effect of internal pressure in the tensile strain capacity predictions in a conservative way. Further research by Wang et al with full scale pipes having an internal pressure factor of 0.72 also showed that εtcrit decreases in the presence of internal pressure [10]–[15]. In their work, Wang et al presented a clear methodology for the design of full scale experiments and numerical simulations to study the effect of internal pressure on the tensile strain capacity of pipes with girth weld flaws [10]–[15]. However, there has been limited testing to enable a precise understanding of the tensile strain capacity of pipes with grades less than X65 as a function of girth weld flaw sizes and the internal pressure. In this paper the experimental setup for the testing of grade X52 full scale specimens with 12″ diameter and ¼″ wall thickness is demonstrated. In the scope of this research 8 full scale specimens will be tested and the results will be used to formulate the tensile strain capacity of X52 pipes under internal pressure. The specimens are designed for the simultaneous application of displacement controlled tensile loading and the internal pressure. Finite element analysis is applied in the optimization process for the sizes of end plates and connection elements. Also the lengths of the full scale specimens are determined based on the results from finite element analysis. The appropriate lengths are chosen in such a way that between the location of the girth weld flaw and the end plates uniform strain zones could be obtained. The internal pressure in these experiments is ranging between pressure values causing 80% SMYS and 30% SMYS hoop stress. The end plates and connection elements of the specimens are designed in such a way that the tensile displacement load is applied with an eccentricity of 10% of the pipe diameter with the purpose of increasing the magnitude of tensile strains at the girth weld flaw location. The results of two full scale experiments of this research program are presented. The structural response from the experiments is compared to the finite element simulation. The remote strain values of the experiment are found to be higher than the εtcrit values predicted by the equations in 0.


Author(s):  
Satoshi Igi ◽  
Takahiro Sakimoto ◽  
Nobuhisa Suzuki ◽  
Ryuji Muraoka ◽  
Takekazu Arakawa

This paper presents the results of experimental and finite element analysis (FEA) studies focused on the tensile strain capacity of X80 pipelines under large axial loading with high internal pressure. Full-pipe tensile test of girth welded joint was performed using high-strain X80 linepipes. Curved wide plate (CWP) tests were also conducted to verify the strain capacity under a condition of no internal pressure. The influence of internal pressure was clearly observed in the strain capacity. Critical tensile strain is reduced drastically due to the increased crack driving force under high internal pressure. In addition, SENT tests with shallow notch specimens were conducted in order to obtain a tearing resistance curve for the simulated HAZ of X80 material. Crack driving force curves were obtained by a series of FEA, and the critical global strain of pressurized pipes was predicted to verify the strain capacity of X80 welded linepipes with surface defects. Predicted strain showed good agreement with the experimental results.


Author(s):  
Banglin Liu ◽  
Yong-Yi Wang ◽  
Xiaotong Chen ◽  
David Warman

Abstract The ability to accurately estimate the tensile strain capacity (TSC) of a girth weld is critical to performing strain-based assessment (SBA). A wide range of geometry, material, and loading factors can affect the TSC of a girth weld. Among the influencing factors, an increase in the internal pressure level has been shown to have a detrimental effect on the TSC. The overall influence of internal pressure is usually quantified by a TSC reduction factor, defined as the ratio of the TSC at zero pressure to the lowest TSC typically attained at pressure factors around 0.5–0.6. Here the pressure factor is defined as the ratio of the nominal hoop stress induced by pressure to the yield strength (YS) of the pipe material. A number of numeric and experiment studies have reported a TSC reduction factor of 1.5–2.5. These studies generally focused on strain-based designed pipelines with evenmatching or overmatching welds, minimum heat affected zone (HAZ) softening, and a surface breaking flaw at the weld centerline or the fusion boundary. This paper examines the effects of pipe internal pressure on the TSC of girth welds under the premise of weld strength undermatching and HAZ softening. The interaction of biaxial loading and the local stress concentration at the girth weld region was quantified using full-pipe finite element analysis (FEA). The relationship between TSC and the internal pressure level was obtained under several combinations of weld strength mismatch and HAZ softening. Results from the FEA show that the effects of the internal pressure on the TSC are highly sensitive to the material attributes in the girth weld region. Under less favorable weld strength undermatching and HAZ softening conditions, the traditionally assumed reduction factor or 1.5–2.5 may not be applicable. Further, the location of tensile failure is found to depend on both the weld material attributes and the internal pressure. It is possible for the failure location to shift from pipe body at zero internal pressure to the girth weld at elevated internal pressure levels. The implications of the results for both girth weld qualification and integrity assessment are discussed.


Author(s):  
Bo Lu ◽  
Wen Zhao ◽  
Xi Du ◽  
Shengang Li ◽  
Yongping Guan ◽  
...  

A new pipe-roof construction method, the steel support cutting pipe method (SSCP), was proposed to improve the construction security and accuracy of pipe jacking as well as underground space usage. The pipe-roof method is one of the underground excavation methods which push multiple steel pipes into the soil, then connect the steel pipes horizontally to form a whole. The proposed structure’s failure mode and force characteristics were determined through theoretical analysis, and then its ultimate bearing capacity and influencing parameters were analyzed through laboratory experiments and numerical simulation. The research results show that the structure’s bearing capacity depends on the steel pipe’s buckling load; the structure’s failure mode is a result of the steel pipe’s buckling. The ultimate bearing capacity of the pipe-roof structure first increases and then decreases with the increase of the steel pipe chord height ratio. The ultimate bearing capacity reaches the maximum when the ratio is 0.33. In addition, the structure’s ultimate bearing capacity is positively related to the steel pipe wall thickness and the pipe section’s length. This can be obtained from the relationship curve showing that the steel pipe wall thickness should be selected according to the engineering requirements and that the pipe section’s length is preferably 2.3 times the diameter of the steel pipe in the construction design.


2016 ◽  
Vol 138 (6) ◽  
Author(s):  
Diana Abdulhameed ◽  
Celal Cakiroglu ◽  
Meng Lin ◽  
Roger Cheng ◽  
John Nychka ◽  
...  

Wide plate testing has been traditionally applied to evaluate the tensile strain capacity (TSC) of pipelines with girth weld flaws. These wide plate tests cannot incorporate the effect of internal pressure, however, numerical analysis in recent studies showed that the TSC is affected by the level of internal pressure inside the pipeline (Wang et al. 2007, "Strain Based Design of High Strength Pipelines," 17th International Offshore and Polar Engineering Conference (ISOPE), Lisbon, Portugal, Vol. 4, pp. 3186–3193). Moreover, most of the past studies focused on the effect of circumferential flaws on the TSC for pipelines of steel grade X65 or higher. The current Oil and Gas Pipeline System Code CSA Z662-11 provides equations to predict the TSC as a function of geometry and material properties of the pipelines. These equations were based on extensive studies on pipes having grades X65 or higher without considering the effect of internal pressure. This paper investigates the TSC for pipelines obtained using an experimental technique considering the effect of internal pressure and flaw size. Eight full-scale tests of X52 NPS 12 in. pipes with 6.91 mm wall thickness were conducted in order to investigate the effect of circumferential flaws close to a girth weld on the TSC for vintage pipelines subjected to eccentric tensile forces and internal pressure. The tensile strains along the pipe length and on the outer circumference of the pipe were measured using biaxial strain gauges and a digital image correlation (DIC) system. Postfailure macrofractography analysis was used to confirm the original size of the machined flaw and to identify areas of plastic deformation and brittle/ductile fracture surfaces. From the experimental and numerical results, the effect of internal pressure and flaw size on the TSC and the crack mouth opening displacement (CMOD) at failure were investigated and presented.


Author(s):  
Satoshi Igi ◽  
Takahiro Sakimoto ◽  
Shigeru Endo ◽  
Ryuji Muraoka ◽  
Takekazu Arakawa

This paper examines the tensile strain capacity of girth welded pipelines. A pressurized and no pressurized full-pipe tension tests were conducted together with FE analyses in order to investigate the strain behavior of pipe under large axial loading with high internal pressure. The critical tensile strain drastically decreased under a high internal pressure condition. Single edge notch tension (SENT) tests with shallow notched specimens were also performed to obtain the material resistance curve (R-curve), and a series of FE analyses was conducted to obtain the crack driving force for ductile crack propagation. The R-curve and crack driving force curve were used in predicting the tensile strain limit of X80 girth welded pipe with a surface defect in the HAZ. The predicted critical tensile strain showed good agreement with that obtained in the pressurized and no pressurized full-pipe tension test.


2011 ◽  
Vol 10 ◽  
pp. 1451-1456 ◽  
Author(s):  
Satoshi Igi ◽  
Takahiro Sakimoto ◽  
Shigeru Endo

Sign in / Sign up

Export Citation Format

Share Document