Kinematic Constraint Maps and C-space Singularities for Planar Mechanisms with Prismatic Joints

Author(s):  
Seyed Vahid Amirinezhad ◽  
Peter Donelan
Author(s):  
Shamsul A. Shamsudin ◽  
Andrew P. Murray ◽  
David H. Myszka ◽  
James P. Schmiedeler

This paper presents a kinematic procedure to synthesize planar mechanisms capable of approximating a shape change defined by a general set of curves. These “morphing curves”, referred to as design profiles, differ from each other by a combination of displacement in the plane, shape variation, and notable differences in arc length. Where previous rigid-body shape-change work focused on mechanisms composed of rigid links and revolute joints to approximate curves of roughly equal arc length, this work introduces prismatic joints into the mechanisms in order to produce the different desired arc lengths. A method is presented to inspect and compare the profiles so that the regions are best suited for prismatic joints can be identified. The result of this methodology is the creation of a chain of rigid bodies connected by revolute and prismatic joints that can approximate a set of design profiles.


Author(s):  
Michael Slavutin ◽  
Offer Shai ◽  
Andreas Müller

Rigidity theory deals mostly with the topological computation in mechanical systems, i.e. it aims at making generic statements. Mechanism theory is mainly concerned with the geometrical analysis but again also with generic statements. Even more so for mobility analysis where one is interested in both the generic mobility and that of a particular mechanism. In rigidity theory the mathematical foundation is the topology representation using bar-joint and body-bar graphs, and the corresponding rigidity matrix. In this paper novel geometric rules for constructing the body-bar rigidity matrix are derived for general planar mechanisms comprising revolute and prismatic joints. This allows, for the first time, the treatment of general planar mechanisms with the body-bar approach. The rigidity matrix is also derived for spatial mechanisms with spherical joints. The bar-joint rigidity matrix is shown to be a special case of body-bar representation. It is shown that the rigidity matrices allow for mobility calculation as shown in the paper. This paper is aimed at supplying a unified view and as a result to enable the mechanisms community to employ the theorems and methods used in rigidity theory. An algorithm for mobility determination — the pebble game — is discussed. This algorithm always finds the correct generic mobility if the mechanism can be represented by a body-bar graph.


2019 ◽  
Vol 10 (2) ◽  
pp. 449-464 ◽  
Author(s):  
Xiaoyong Wu ◽  
Shaoping Bai

Abstract. Singularity is an inherent property of robotic manipulators. A manipulator becomes singular when it gains or losses degrees of freedom at a particular configuration. In this work, a type of singularities caused by special shapes of platforms, either the mobile or the base platform, is addressed. This type of singularities pertains to the architecture singularity, but associated only with special shape designs of base and mobile platforms and spans in the whole workspace, which is referred as shape singularity. The paper provides formulations of shape singularity. The geometry and algebra properties of shape singularity are analyzed. Three examples of shape singularity identification for parallel mechanisms with prismatic joints are included, one for 3-DOF planar mechanisms, the others for 3-DOF and 6-DOF spatial mechanisms. The application of shape singularity in adjustable compliance mechanism design is illustrated.


2005 ◽  
Vol 128 (6) ◽  
pp. 1261-1271 ◽  
Author(s):  
W. Z. Guo ◽  
R. Du

Single-loop N-bar linkages that contain one prismatic joint are common in engineering. This type of mechanism often requires complicated control and, hence, understanding its mobility is very important. This paper presents a systematic study on the mobility of this type of mechanism by introducing the concept of virtual link. It is found that this type of mechanism can be divided into three categories: Class I, Class II, and Class III. For each category, the slide reachable range is cut into different regions: Grashof region, non-Grashof region, and change-point region. In each region, the rotation range of the revolute joint or rotatability of the linkage can be determined based on Ting’s criteria. The characteristics charts are given to describe the rotatability condition. Furthermore, if the prismatic joint is an active joint, the revolvability of the input revolute joint is dependent in non-Grashof region but independent in other regions. If the prismatic joint is a passive joint, the revolvability of the input revolute joint is dependent on the offset distance of the prismatic joint. Two examples are given to demonstrate the presented method. The new method is able to cover all the cases of N-bar planar linkages with one or a set of adjoined prismatic joints. It can also be used to study N-bar open-loop planar robotic mechanisms.


2021 ◽  
Vol 11 (11) ◽  
pp. 4959
Author(s):  
Peng Guo ◽  
Yijie Wu ◽  
Guang Yang ◽  
Zhebin Shen ◽  
Haorong Zhang ◽  
...  

The curvature of the NURBS curve varies along its trajectory, therefore, the commonly used feedrate-planning method, which based on the acceleration/deceleration (Acc/Dec) model, is difficult to be directly applied in CNC machining of a NURBS curve. To address this problem, a feedrate-planning method based on the critical constraint curve of the feedrate (CCC) is proposed. Firstly, the problems of existing feedrate-planning methods and their causes are analyzed. Secondly, by considering both the curvature constraint and the kinematic constraint during the Acc/Dec process, the concept of CCC which represents the relationship between the critical feedrate-constraint value and the arc length is proposed. Then the CCC of a NURBS curve is constructed, and it has a concise expression conforming to the Acc/Dec model. Finally, a feedrate-planning method of a NURBS curve based on CCC and the Acc/Dec model is established. In the simulation, a comparison between the proposed method and the conventional feedrate-planning method is performed, and the results show that, the proposed method can reduce the Acc/Dec time by over 40%, while little computational burden being added. The machining experimental results validate the real-time performance and stability of the proposed method, and also the machining quality is verified. The proposed method offers an effective feedrate-planning strategy for a NURBS curve in CNC machining.


Author(s):  
Olivier Ozenda ◽  
Epifanio G. Virga

AbstractThe Kirchhoff-Love hypothesis expresses a kinematic constraint that is assumed to be valid for the deformations of a three-dimensional body when one of its dimensions is much smaller than the other two, as is the case for plates. This hypothesis has a long history checkered with the vicissitudes of life: even its paternity has been questioned, and recent rigorous dimension-reduction tools (based on standard $\varGamma $ Γ -convergence) have proven to be incompatible with it. We find that an appropriately revised version of the Kirchhoff-Love hypothesis is a valuable means to derive a two-dimensional variational model for elastic plates from a three-dimensional nonlinear free-energy functional. The bending energies thus obtained for a number of materials also show to contain measures of stretching of the plate’s mid surface (alongside the expected measures of bending). The incompatibility with standard $\varGamma $ Γ -convergence also appears to be removed in the cases where contact with that method and ours can be made.


Sign in / Sign up

Export Citation Format

Share Document