scholarly journals Glacial Sediment Stores and Their Reworking

Author(s):  
Philip R. Porter ◽  
Martin J. Smart ◽  
Tristram D. L. Irvine-Fynn
Keyword(s):  
2021 ◽  
Vol 776 ◽  
pp. 146041
Author(s):  
Hyojin Kim ◽  
Peter B.E. Sandersen ◽  
Rasmus Jakobsen ◽  
Anders Juhl Kallesøe ◽  
Niels Claes ◽  
...  

1996 ◽  
Vol 42 (142) ◽  
pp. 440-446 ◽  
Author(s):  
Roberto H. Gwiazda ◽  
Sidney R. Hemming ◽  
Wallace S. Broecker ◽  
Tullis Onsttot ◽  
Chris Mueller

Abstract40Ar/39Ar ages of most single ice-ratted amphiboles from Heinrich layer 2 (H2) from a core in the Labrador Sea, a core in the eastern North Atlantic and a core in the western North Atlantic range from 1600 to 2000 Ma. This range is identical to that for K/Ar ages from the Churchill province of the Canadian Shield that outcrops at Hudson Strait and forms the basement of the northern part of Hudson Bay. The ambient glacial sediment includes some younger and older grains derived from Paleozoic, Mesoproterozoic and Archean sources, but still the majority of the amphiboles have ages in the 1600–2000 Ma interval. The Ca/K ratios of these 1600–2000 Ma old amphiboles, however, have a bimodal distribution in contrast with the uniformity of the Ca/K ratios of H2 amphiboles. This indicates that 1600–2000 Ma old amphiboles of the ambient sediment were derived from an additional Early Proterozoic source besides Churchill province. In H2, Churchill-derived grains constitute 20–40% of the ice-rafted debris (IRD). The fraction in the ambient glacial sediment is 65–80%. Results presented here are consistent with the hypothesis that Heinrich events were produced by a sudden intensification of the iceberg discharge through Hudson Strait that mixed, in the North Atlantic, with icebergs that continued to calve from other ice sheets. The shift from mixed sources in the background sediment to a large dominance of Churchill province grains in H2 indicates that, even if calving of other ice sheets intensified during the Heinrich episode, the increase in the iceberg discharge via Hudson Strait from the Hudson Bay drainage basin of the Laurentide ice sheet was by far the largest.


2020 ◽  
Vol 14 (1) ◽  
pp. 261-286 ◽  
Author(s):  
Kelly A. Hogan ◽  
Martin Jakobsson ◽  
Larry Mayer ◽  
Brendan T. Reilly ◽  
Anne E. Jennings ◽  
...  

Abstract. Petermann Fjord is a deep (>1000 m) fjord that incises the coastline of north-west Greenland and was carved by an expanded Petermann Glacier, one of the six largest outlet glaciers draining the modern Greenland Ice Sheet (GrIS). Between 5 and 70 m of unconsolidated glacigenic material infills in the fjord and adjacent Nares Strait, deposited as the Petermann and Nares Strait ice streams retreated through the area after the Last Glacial Maximum. We have investigated the deglacial deposits using seismic stratigraphic techniques and have correlated our results with high-resolution bathymetric data and core lithofacies. We identify six seismo-acoustic facies in more than 3500 line kilometres of sub-bottom and seismic-reflection profiles throughout the fjord, Hall Basin and Kennedy Channel. Seismo-acoustic facies relate to bedrock or till surfaces (Facies I), subglacial deposition (Facies II), deposition from meltwater plumes and icebergs in quiescent glacimarine conditions (Facies III, IV), deposition at grounded ice margins during stillstands in retreat (grounding-zone wedges; Facies V) and the redeposition of material downslope (Facies IV). These sediment units represent the total volume of glacial sediment delivered to the mapped marine environment during retreat. We calculate a glacial sediment flux for the former Petermann ice stream as 1080–1420 m3 a−1 per metre of ice stream width and an average deglacial erosion rate for the basin of 0.29–0.34 mm a−1. Our deglacial erosion rates are consistent with results from Antarctic Peninsula fjord systems but are several times lower than values for other modern GrIS catchments. This difference is attributed to fact that large volumes of surface water do not access the bed in the Petermann system, and we conclude that glacial erosion is limited to areas overridden by streaming ice in this large outlet glacier setting. Erosion rates are also presented for two phases of ice retreat and confirm that there is significant variation in rates over a glacial–deglacial transition. Our new glacial sediment fluxes and erosion rates show that the Petermann ice stream was approximately as efficient as the palaeo-Jakobshavn Isbræ at eroding, transporting and delivering sediment to its margin during early deglaciation.


2013 ◽  
Vol 118 (4) ◽  
pp. 2072-2088 ◽  
Author(s):  
Katherine V. Boldt ◽  
Charles A. Nittrouer ◽  
Bernard Hallet ◽  
Michele N. Koppes ◽  
Brittany K. Forrest ◽  
...  

Geomorphology ◽  
2012 ◽  
Vol 167-168 ◽  
pp. 102-114 ◽  
Author(s):  
Ilja L. de Winter ◽  
Joep E.A. Storms ◽  
Irina Overeem

2018 ◽  
Vol 180 ◽  
pp. 111-131 ◽  
Author(s):  
D.A. Swift ◽  
S.J. Cook ◽  
D.J. Graham ◽  
N.G. Midgley ◽  
A.E. Fallick ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document