scholarly journals Evidence from 40Ar/39Ar Ages for a Churchill province source of ice-rafted amphiboles in Heinrich layer 2

1996 ◽  
Vol 42 (142) ◽  
pp. 440-446 ◽  
Author(s):  
Roberto H. Gwiazda ◽  
Sidney R. Hemming ◽  
Wallace S. Broecker ◽  
Tullis Onsttot ◽  
Chris Mueller

Abstract40Ar/39Ar ages of most single ice-ratted amphiboles from Heinrich layer 2 (H2) from a core in the Labrador Sea, a core in the eastern North Atlantic and a core in the western North Atlantic range from 1600 to 2000 Ma. This range is identical to that for K/Ar ages from the Churchill province of the Canadian Shield that outcrops at Hudson Strait and forms the basement of the northern part of Hudson Bay. The ambient glacial sediment includes some younger and older grains derived from Paleozoic, Mesoproterozoic and Archean sources, but still the majority of the amphiboles have ages in the 1600–2000 Ma interval. The Ca/K ratios of these 1600–2000 Ma old amphiboles, however, have a bimodal distribution in contrast with the uniformity of the Ca/K ratios of H2 amphiboles. This indicates that 1600–2000 Ma old amphiboles of the ambient sediment were derived from an additional Early Proterozoic source besides Churchill province. In H2, Churchill-derived grains constitute 20–40% of the ice-rafted debris (IRD). The fraction in the ambient glacial sediment is 65–80%. Results presented here are consistent with the hypothesis that Heinrich events were produced by a sudden intensification of the iceberg discharge through Hudson Strait that mixed, in the North Atlantic, with icebergs that continued to calve from other ice sheets. The shift from mixed sources in the background sediment to a large dominance of Churchill province grains in H2 indicates that, even if calving of other ice sheets intensified during the Heinrich episode, the increase in the iceberg discharge via Hudson Strait from the Hudson Bay drainage basin of the Laurentide ice sheet was by far the largest.


1996 ◽  
Vol 42 (142) ◽  
pp. 440-446 ◽  
Author(s):  
Roberto H. Gwiazda ◽  
Sidney R. Hemming ◽  
Wallace S. Broecker ◽  
Tullis Onsttot ◽  
Chris Mueller

Abstract40Ar/39Ar ages of most single ice-ratted amphiboles from Heinrich layer 2 (H2) from a core in the Labrador Sea, a core in the eastern North Atlantic and a core in the western North Atlantic range from 1600 to 2000 Ma. This range is identical to that for K/Ar ages from the Churchill province of the Canadian Shield that outcrops at Hudson Strait and forms the basement of the northern part of Hudson Bay. The ambient glacial sediment includes some younger and older grains derived from Paleozoic, Mesoproterozoic and Archean sources, but still the majority of the amphiboles have ages in the 1600–2000 Ma interval. The Ca/K ratios of these 1600–2000 Ma old amphiboles, however, have a bimodal distribution in contrast with the uniformity of the Ca/K ratios of H2 amphiboles. This indicates that 1600–2000 Ma old amphiboles of the ambient sediment were derived from an additional Early Proterozoic source besides Churchill province. In H2, Churchill-derived grains constitute 20–40% of the ice-rafted debris (IRD). The fraction in the ambient glacial sediment is 65–80%. Results presented here are consistent with the hypothesis that Heinrich events were produced by a sudden intensification of the iceberg discharge through Hudson Strait that mixed, in the North Atlantic, with icebergs that continued to calve from other ice sheets. The shift from mixed sources in the background sediment to a large dominance of Churchill province grains in H2 indicates that, even if calving of other ice sheets intensified during the Heinrich episode, the increase in the iceberg discharge via Hudson Strait from the Hudson Bay drainage basin of the Laurentide ice sheet was by far the largest.



1990 ◽  
Vol 14 ◽  
pp. 32-38 ◽  
Author(s):  
Kerry H. Cook

This paper discusses some modeling results that indicate how the atmospheric response to the topography of the continental ice of the Last Glacial Maximum (LGM) may be related to the cold North Atlantic Ocean of that time. Broccoli and Manabe (1987) used a three-dimensional general circulation model (GCM) of the atmosphere coupled with a fixed-depth, static ocean mixed-layer model with ice-age boundary conditions to investigate the individual influences of the CLIMAP ice sheets, snow-free land albedos, and reduced atmospheric CO2 concentrations. They found that the ice sheets are the most influential of the ice-age boundary conditions in modifying the northern hemisphere climate, and that the presence of continental ice sheets alone leads to cooling over the North Atlantic Ocean. One approach for extending these GCM results is to consider the stationary waves generated by the ice sheets. Cook and Held (1988) showed that a linearized, steady-state, primitive equation model can give a reasonable simulation of the GCM’s stationary waves forced by the Laurentide ice sheet. The linear model analysis suggests that the mechanical effect of the changed slope of the surface, and not changes in the diabatic heating (e.g. the high surface albedos) or time-dependent transports that necessarily accompany the ice sheet in the GCM, is largely responsible for the ice sheet’s influence. To obtain the ice-age stationary-wave simulation, the linear model must be linearized about the zonal mean fields from the GCM’s ice-age climate. This is the case because the proximity of the cold polar air to the region of adiabatic heating on the downslope of the Laurentide ice sheet is an important factor in determining the stationary waves. During the ice age, cold air can be transported southward to balance this downslope heating by small perturbations in the meridional wind, consistent with linear theory. Since the meridional temperature gradient is more closely related to the surface albedo (ice extent) than to the ice volume, this suggests a mechanism by which changes in the stationary waves and, therefore, their cooling influence at low levels over the North Atlantic Ocean, can occur on time scales faster than those associated with large changes in continental ice volume.



1990 ◽  
Vol 14 ◽  
pp. 32-38
Author(s):  
Kerry H. Cook

This paper discusses some modeling results that indicate how the atmospheric response to the topography of the continental ice of the Last Glacial Maximum (LGM) may be related to the cold North Atlantic Ocean of that time. Broccoli and Manabe (1987) used a three-dimensional general circulation model (GCM) of the atmosphere coupled with a fixed-depth, static ocean mixed-layer model with ice-age boundary conditions to investigate the individual influences of the CLIMAP ice sheets, snow-free land albedos, and reduced atmospheric CO2 concentrations. They found that the ice sheets are the most influential of the ice-age boundary conditions in modifying the northern hemisphere climate, and that the presence of continental ice sheets alone leads to cooling over the North Atlantic Ocean.One approach for extending these GCM results is to consider the stationary waves generated by the ice sheets. Cook and Held (1988) showed that a linearized, steady-state, primitive equation model can give a reasonable simulation of the GCM’s stationary waves forced by the Laurentide ice sheet. The linear model analysis suggests that the mechanical effect of the changed slope of the surface, and not changes in the diabatic heating (e.g. the high surface albedos) or time-dependent transports that necessarily accompany the ice sheet in the GCM, is largely responsible for the ice sheet’s influence. To obtain the ice-age stationary-wave simulation, the linear model must be linearized about the zonal mean fields from the GCM’s ice-age climate. This is the case because the proximity of the cold polar air to the region of adiabatic heating on the downslope of the Laurentide ice sheet is an important factor in determining the stationary waves. During the ice age, cold air can be transported southward to balance this downslope heating by small perturbations in the meridional wind, consistent with linear theory. Since the meridional temperature gradient is more closely related to the surface albedo (ice extent) than to the ice volume, this suggests a mechanism by which changes in the stationary waves and, therefore, their cooling influence at low levels over the North Atlantic Ocean, can occur on time scales faster than those associated with large changes in continental ice volume.



1963 ◽  
Vol 20 (3) ◽  
pp. 789-826 ◽  
Author(s):  
B. McK. Bary

Monthly temperature-salinity diagrams for 1957 have demonstrated that three surface oceanic "water bodies" were consistently present in the eastern North Atlantic; two are regarded as modified North Atlantic Central water which give rise to the third by mixing. As well in the oceanic areas, large and small, high or low salinity patches of water were common. Effects of seasonal climatic fluctuations differed in the several oceanic water bodies. In coastal waters, differences in properties and in seasonal and annual cycles of the properties distinguish the waters from the North Sea, English Channel and the western entrance to the Channel.The geographic distributions of the oceanic waters are consistent with "northern" and "southern" water bodies mixing to form a "transitional" water. Within this distribution there are short-term changes in boundaries and long-term (seasonal) changes in size of the water bodies.Water in the western approaches to the English Channel appeared to be influenced chiefly by the mixed, oceanic transitional water; oceanic influences in the North Sea appear to have been from northern and transitional waters.



Author(s):  
Conor Ryan ◽  
Pádraig Whooley ◽  
Simon D. Berrow ◽  
Colin Barnes ◽  
Nick Massett ◽  
...  

Knowledge on the ecology of humpback whales in the eastern North Atlantic is lacking by comparison with most other ocean basins. Humpback whales were historically over-exploited in the region and are still found in low relative abundances. This, coupled with their large range makes them difficult to study. With the aim of informing more effective conservation measures in Ireland, the Irish Whale and Dolphin Group began recording sightings and images suitable for photo-identification of humpback whales from Irish waters in 1999. Validated records submitted by members of the public and data from dedicated surveys were analysed to form a longitudinal study of individually recognizable humpback whales. The distribution, relative abundance and seasonality of humpback whale sighting records are presented, revealing discrete important areas for humpback whales in Irish coastal waters. An annual easterly movement of humpback whales along the southern coast of Ireland is documented, mirroring that of their preferred prey: herring and sprat. Photo-identification images were compared with others collected throughout the North Atlantic (N = 8016), resulting in matches of two individuals between Ireland and Iceland, Norway and the Netherlands but no matches to known breeding grounds (Cape Verde and West Indies). This study demonstrates that combining public records with dedicated survey data is an effective approach to studying low-density, threatened migratory species over temporal and spatial scales that are relevant to conservation and management.



2016 ◽  
Vol 4 (4) ◽  
pp. 831-869 ◽  
Author(s):  
Andrew D. Wickert

Abstract. Over the last glacial cycle, ice sheets and the resultant glacial isostatic adjustment (GIA) rearranged river systems. As these riverine threads that tied the ice sheets to the sea were stretched, severed, and restructured, they also shrank and swelled with the pulse of meltwater inputs and time-varying drainage basin areas, and sometimes delivered enough meltwater to the oceans in the right places to influence global climate. Here I present a general method to compute past river flow paths, drainage basin geometries, and river discharges, by combining models of past ice sheets, glacial isostatic adjustment, and climate. The result is a time series of synthetic paleohydrographs and drainage basin maps from the Last Glacial Maximum to present for nine major drainage basins – the Mississippi, Rio Grande, Colorado, Columbia, Mackenzie, Hudson Bay, Saint Lawrence, Hudson, and Susquehanna/Chesapeake Bay. These are based on five published reconstructions of the North American ice sheets. I compare these maps with drainage reconstructions and discharge histories based on a review of observational evidence, including river deposits and terraces, isotopic records, mineral provenance markers, glacial moraine histories, and evidence of ice stream and tunnel valley flow directions. The sharp boundaries of the reconstructed past drainage basins complement the flexurally smoothed GIA signal that is more often used to validate ice-sheet reconstructions, and provide a complementary framework to reduce nonuniqueness in model reconstructions of the North American ice-sheet complex.



Geology ◽  
2020 ◽  
Author(s):  
Armand Hernández ◽  
Mário Cachão ◽  
Pedro Sousa ◽  
Ricardo M. Trigo ◽  
Jürg Luterbacher ◽  
...  

Nearshore upwelling along the eastern North Atlantic margin regulates regional marine ecosystem productivity and thus impacts blue economies. While most global circulation models show an increase in the intensity and duration of seasonal upwelling at high latitudes under future human-induced warmer conditions, projections for the North Atlantic are still ambiguous. Due to the low temporal resolution of coastal upwelling records, little is known about the impact of natural forcing mechanisms on upwelling variability. Here, we present a microfossil-based proxy record and modeling simulations for the warmest period of the Holocene (ca. 9–5 ka) to estimate the contribution of the natural variability in North Atlantic upwelling via atmospheric and oceanic dynamics. We found that more frequent high-pressure conditions in the eastern North Atlantic associated with solar activity and orbital parameters triggered upwelling variations at multidecadal and millennial time scales, respectively. Our new findings offer insights into the role of external forcing mechanisms in upwelling changes before the Anthropocene, which must be considered when producing future projections of midlatitude upwelling activity.



2007 ◽  
Vol 3 (3) ◽  
pp. 729-753 ◽  
Author(s):  
K. Ljung ◽  
S. Björck ◽  
H. Renssen ◽  
D. Hammarlund

Abstract. One of the most distinct climate fluctuations during the Holocene is the short and rapid event centred around 8200 years ago, the 8.2 kyr event, which was most likely triggered by glacial melt-water forcing from the receding Laurentide ice-sheet. Evidence for this cooling has primarily been reported from sites around the North Atlantic, but an increasing number of observations imply a more wide-spread occurrence. Palaeoclimate archives from the Southern Hemisphere have hitherto failed to uncover a distinct climatic anomaly associated with the 8.2 kyr event. Here we present a lake sediment record from Nightingale Island in the central South Atlantic showing enhanced precipitation between 8275 and 8025 cal. yrs BP, most likely as a consequence of increased sea surface temperature (SST). We show that this is consistent with climate model projections of a warming of the South Atlantic in response to reduced north-ward energy transport during the 8.2 kyr event.



2016 ◽  
Author(s):  
David A. Hodell ◽  
James E.T. Channell

Abstract. We present a 3.2-Myr record of stable isotopes and physical properties at IODP Site U1308 (re-occupation of DSDP Site 609) located within the ice-rafted detritus (IRD) belt of the North Atlantic. We compare the isotope and lithological proxies at Site U1308 with other North Atlantic records (e.g., Sites 982, 607/U1313 and U1304) to reconstruct the history of orbital and millennial-scale climate variability during the Quaternary. The Site U1308 record documents a progressive increase in the intensity of Northern Hemisphere glacial-interglacial cycles during the late Pliocene and Quaternary with mode transitions at ~ 2.7, 1.5, 0.9 and 0.65 Ma. These transitions mark times of change in the growth and stability of Northern Hemisphere ice sheets. They also coincide with increases in vertical carbon isotope gradients between the intermediate and deep ocean, suggesting changes in deep carbon storage and atmospheric CO2. Orbital and millennial climate variability co-evolved during the Quaternary such that the trend towards larger ice sheets was accompanied by changes in the style, frequency and intensity of millennial-scale variability. This co-evolution may be important for explaining the observed patterns of Quaternary climate change.



2020 ◽  
Vol 13 (9) ◽  
pp. 4555-4577
Author(s):  
Ilkka S. O. Matero ◽  
Lauren J. Gregoire ◽  
Ruza F. Ivanovic

Abstract. Simulating the demise of the Laurentide Ice Sheet covering Hudson Bay in the Early Holocene (10–7 ka) is important for understanding the role of accelerated changes in ice sheet topography and melt in the 8.2 ka event, a century long cooling of the Northern Hemisphere by several degrees. Freshwater released from the ice sheet through a surface mass balance instability (known as the saddle collapse) has been suggested as a major forcing for the 8.2 ka event, but the temporal evolution of this pulse has not been constrained. Dynamical ice loss and marine interactions could have significantly accelerated the ice sheet demise, but simulating such processes requires computationally expensive models that are difficult to configure and are often impractical for simulating past ice sheets. Here, we developed an ice sheet model setup for studying the Laurentide Ice Sheet's Hudson Bay saddle collapse and the associated meltwater pulse in unprecedented detail using the BISICLES ice sheet model, an efficient marine ice sheet model of the latest generation which is capable of refinement to kilometre-scale resolutions and higher-order ice flow physics. The setup draws on previous efforts to model the deglaciation of the North American Ice Sheet for initialising the ice sheet temperature, recent ice sheet reconstructions for developing the topography of the region and ice sheet, and output from a general circulation model for a representation of the climatic forcing. The modelled deglaciation is in agreement with the reconstructed extent of the ice sheet, and the associated meltwater pulse has realistic timing. Furthermore, the peak magnitude of the modelled meltwater equivalent (0.07–0.13 Sv) is compatible with geological estimates of freshwater discharge through the Hudson Strait. The results demonstrate that while improved representations of the glacial dynamics and marine interactions are key for correctly simulating the pattern of Early Holocene ice sheet retreat, surface mass balance introduces by far the most uncertainty. The new model configuration presented here provides future opportunities to quantify the range of plausible amplitudes and durations of a Hudson Bay ice saddle collapse meltwater pulse and its role in forcing the 8.2 ka event.



Sign in / Sign up

Export Citation Format

Share Document