Experimental Investigation on the Mechanical Strength and Thermal Conductivity of Extrudable Foamed Concrete and Preliminary Views on Its Potential Application in 3D Printed Multilayer Insulating Panels

Author(s):  
Devid Falliano ◽  
Ernesto Gugliandolo ◽  
Dario De Domenico ◽  
Giuseppe Ricciardi
2021 ◽  
Vol 118 (13) ◽  
pp. 131903
Author(s):  
Haohuan Wang ◽  
Zhengyong Huang ◽  
Jian Li ◽  
Feipeng Wang ◽  
Zhanzu Feng ◽  
...  

1987 ◽  
Vol 8 (2) ◽  
pp. 263-280 ◽  
Author(s):  
H. Reiss ◽  
F. Schmaderer ◽  
G. Wahl ◽  
B. Ziegenbein ◽  
R. Caps

1991 ◽  
Vol 226 ◽  
Author(s):  
Wang Chunqing ◽  
Qian Yiyu ◽  
Jiang Yihong

AbstractIn this paper,a numerical simulation of thermal process in the SMT laser microsoldering joint has been developed, in which, the influence on thermal process of the factors such as the thermal conductivity variation of solder with temperature, light reflection coefficient of the lead wire surface, and heat exchange on the surface of SMT materials all have been considered. In order to carry this numerical calculation practice and prove it's results,the reflexive characteristic of light wave to the SMT materials has been gauged,and the dynamic temperature process of laser microjoint has been measured by a new experimental method which was invented by the authors.The results of numerical simulation have been borne out by the tests, and the influences of heating parameters on thermal process has been analysed in this paper.The conclusions will be advantageous to the further study of the microjoint quality control in the SMT laser microsoldering.


2008 ◽  
Vol 589 ◽  
pp. 421-425 ◽  
Author(s):  
Norbert Krisztián Kovács ◽  
József Gábor Kovács

Characteristics of 3D printed specimens are porous structure and low mechanical strength. Due to porous structure post treatment is possible, and in most cases infiltration with an epoxy resin, wax or cyanoacrylate material takes place. As a result of post treatment, the mechanical strength can be increased by 100%, although this is strongly influenced by the infiltration depth that depends on the porous structure and the resin viscosity. In the framework of the common research of the Department of Polymer Engineering, BME and Varinex Zrt. the applicability of a 3D printer is examined in the field of direct tool making. As the first step, the resin uptake ability of specimens prepared with a Z810 3D printer is examined.


2011 ◽  
Vol 278 ◽  
pp. 312-320 ◽  
Author(s):  
Marcos Valério Ribeiro ◽  
André Luís Habib Bahia

Considering the constant technological developments in the aeronautical, space, automotive, shipbuilding, nuclear and petrochemical fields, among others, the use of materials with high strength mechanical capabilities at high temperatures has been increasingly used. Among the materials that meet the mechanical strength and corrosion properties at temperatures around 815 °C one can find the nickel base alloy Pyromet® 31V (SAE HEV8). This alloy is commonly applied in the manufacturing of high power diesel engines exhaust valves where it is required high resistance to sulphide, corrosion and good resistance to creep. However, due to its high mechanical strength and low thermal conductivity its machinability is made difficult, creating major challenges in the analysis of the best combinations among machining parameters and cutting tools to be used. Its low thermal conductivity results in a concentration of heat at high temperatures in the interfaces of workpiece-tool and tool-chip, consequently accelerating the tools wearing and increasing production costs. This work aimed to study the machinability, using the carbide coated and uncoated tools, of the hot-rolled Pyromet® 31V alloy with hardness between 41.5 and 42.5 HRC. The nickel base alloy used consists essentially of the following components: 56.5% Ni, 22.5% Cr, 2,2% Ti, 0,04% C, 1,2% Al, 0.85% Nb and the rest of iron. Through the turning of this alloy we able to analyze the working mechanisms of wear on tools and evaluate the roughness provided on the cutting parameters used. The tests were performed on a CNC lathe machine using the coated carbide tool TNMG 160408-23 Class 1005 (ISO S15) and uncoated tools TNMG 160408-23 Class H13A (ISO S15). Cutting fluid was used so abundantly and cutting speeds were fixed in 75 and 90 m/min. to feed rates that ranged from 0.12, 0.15, 0.18 and 0.21 mm/rev. and cutting depth of 0.8mm. The results of the comparison between uncoated tools and coated ones presented a machined length of just 30% to the first in relation to the performance of the second. The coated tools has obtained its best result for both 75 and 90 m/min. with feed rate of 0.15 mm/rev. unlike the uncoated tool which obtained its better results to 0.12 mm/rev.


Sign in / Sign up

Export Citation Format

Share Document