Convolutional Spiking Neural Network for Robust Object Detection with Population Code Using Structured Pulse Packets

Author(s):  
Masakazu Matsugu ◽  
Katsuhiko Mori ◽  
Yusuke Mitarai
2019 ◽  
Vol 17 (1) ◽  
pp. 69-76
Author(s):  
Mohammad Shiddiq Ghozali

Perkembangan Teknologi Informasi dan Komunikasi begitu pesat di zaman sekarang ini. Diikuti pula dengan perkembangan di bidang Artificial Intelligence (AI) atau Kecerdasan Buatan. Di Indonesia sendiri masih belum begitu populer dikalangan masyarakat akan tetapi perusahaan-perusahaan IT berlomba-lomba menciptakan inovasi dibidang Kecerdasan Buatan dan penerapan Kecerdasan Buatan disegala aspek kehidupan. Contoh kasus di Automated Teller Machine (ATM), seringkali terjadi kejahatan di ATM seperti pengintaian nomor pin, skimming, lebanese loop dan kejahatan lainnya. Walaupun di ATM sudah terdapat CCTV akan tetapi penjahat menggunakan alat bantu untuk menutupi wajahnya seperti helm, topi, masker dan kacamata hitam. Biasanya didepan pintu masuk ATM terpampang larangan untuk tidak menggunakan helm, topi, masker dan kacamata hitam serta tidak membawa rokok. Akan tetapi larangan itu masih tetap ada yang melanggar, dikarenakan tidak ada tindak lanjut ketika seseorang menggunakan benda-benda yang dilarang dibawa kedalam ATM. Oleh karena itu penulis membuat sistem pendeteksi obyek di bidang Kecerdasan Buatan untuk mendeteksi benda-benda yang dilarang digunakan ketika berada di ATM. Salah satu metode yang digunakan untuk menciptakan Object Detection yaitu You Only Look Once (YOLO). Implementasi ide ini tersedia pada DARKNET (open source neural network). Cara kerja YOLO yaitu dengan melihat seluruh gambar sekali, kemudian melewati jaringan saraf sekali langsung mendeteksi object yang ada. Oleh karena itu disebut You Only Look Once (YOLO). Pada penelitian ini, penulis membuat sistem yang masih dalam bentuk pengembangan, sehingga menjalankannya masih menggunakan command prompt. Keywords : Automated Teller Machine (ATM), Kecerdasan Buatan, Pendeteksi Obyek, You Only Look Once (YOLO)  


2018 ◽  
Vol 145 ◽  
pp. 488-494 ◽  
Author(s):  
Aleksandr Sboev ◽  
Alexey Serenko ◽  
Roman Rybka ◽  
Danila Vlasov ◽  
Andrey Filchenkov

2021 ◽  
Vol 1914 (1) ◽  
pp. 012036
Author(s):  
LI Wei ◽  
Zhu Wei-gang ◽  
Pang Hong-feng ◽  
Zhao Hong-yu

2021 ◽  
Vol 18 (1) ◽  
pp. 172988142199332
Author(s):  
Xintao Ding ◽  
Boquan Li ◽  
Jinbao Wang

Indoor object detection is a very demanding and important task for robot applications. Object knowledge, such as two-dimensional (2D) shape and depth information, may be helpful for detection. In this article, we focus on region-based convolutional neural network (CNN) detector and propose a geometric property-based Faster R-CNN method (GP-Faster) for indoor object detection. GP-Faster incorporates geometric property in Faster R-CNN to improve the detection performance. In detail, we first use mesh grids that are the intersections of direct and inverse proportion functions to generate appropriate anchors for indoor objects. After the anchors are regressed to the regions of interest produced by a region proposal network (RPN-RoIs), we then use 2D geometric constraints to refine the RPN-RoIs, in which the 2D constraint of every classification is a convex hull region enclosing the width and height coordinates of the ground-truth boxes on the training set. Comparison experiments are implemented on two indoor datasets SUN2012 and NYUv2. Since the depth information is available in NYUv2, we involve depth constraints in GP-Faster and propose 3D geometric property-based Faster R-CNN (DGP-Faster) on NYUv2. The experimental results show that both GP-Faster and DGP-Faster increase the performance of the mean average precision.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2678
Author(s):  
Sergey A. Lobov ◽  
Alexey I. Zharinov ◽  
Valeri A. Makarov ◽  
Victor B. Kazantsev

Cognitive maps and spatial memory are fundamental paradigms of brain functioning. Here, we present a spiking neural network (SNN) capable of generating an internal representation of the external environment and implementing spatial memory. The SNN initially has a non-specific architecture, which is then shaped by Hebbian-type synaptic plasticity. The network receives stimuli at specific loci, while the memory retrieval operates as a functional SNN response in the form of population bursts. The SNN function is explored through its embodiment in a robot moving in an arena with safe and dangerous zones. We propose a measure of the global network memory using the synaptic vector field approach to validate results and calculate information characteristics, including learning curves. We show that after training, the SNN can effectively control the robot’s cognitive behavior, allowing it to avoid dangerous regions in the arena. However, the learning is not perfect. The robot eventually visits dangerous areas. Such behavior, also observed in animals, enables relearning in time-evolving environments. If a dangerous zone moves into another place, the SNN remaps positive and negative areas, allowing escaping the catastrophic interference phenomenon known for some AI architectures. Thus, the robot adapts to changing world.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1065
Author(s):  
Moshe Bensimon ◽  
Shlomo Greenberg ◽  
Moshe Haiut

This work presents a new approach based on a spiking neural network for sound preprocessing and classification. The proposed approach is biologically inspired by the biological neuron’s characteristic using spiking neurons, and Spike-Timing-Dependent Plasticity (STDP)-based learning rule. We propose a biologically plausible sound classification framework that uses a Spiking Neural Network (SNN) for detecting the embedded frequencies contained within an acoustic signal. This work also demonstrates an efficient hardware implementation of the SNN network based on the low-power Spike Continuous Time Neuron (SCTN). The proposed sound classification framework suggests direct Pulse Density Modulation (PDM) interfacing of the acoustic sensor with the SCTN-based network avoiding the usage of costly digital-to-analog conversions. This paper presents a new connectivity approach applied to Spiking Neuron (SN)-based neural networks. We suggest considering the SCTN neuron as a basic building block in the design of programmable analog electronics circuits. Usually, a neuron is used as a repeated modular element in any neural network structure, and the connectivity between the neurons located at different layers is well defined. Thus, generating a modular Neural Network structure composed of several layers with full or partial connectivity. The proposed approach suggests controlling the behavior of the spiking neurons, and applying smart connectivity to enable the design of simple analog circuits based on SNN. Unlike existing NN-based solutions for which the preprocessing phase is carried out using analog circuits and analog-to-digital conversion, we suggest integrating the preprocessing phase into the network. This approach allows referring to the basic SCTN as an analog module enabling the design of simple analog circuits based on SNN with unique inter-connections between the neurons. The efficiency of the proposed approach is demonstrated by implementing SCTN-based resonators for sound feature extraction and classification. The proposed SCTN-based sound classification approach demonstrates a classification accuracy of 98.73% using the Real-World Computing Partnership (RWCP) database.


2021 ◽  
Vol 443 ◽  
pp. 292-301
Author(s):  
Gangyi Tian ◽  
Jianran Liu ◽  
Wenyuan Yang

Sign in / Sign up

Export Citation Format

Share Document