Analysis of Early Development in the Zebrafish Embryo

Author(s):  
Eric S. Weinberg
Development ◽  
1988 ◽  
Vol 103 (1) ◽  
pp. 49-58 ◽  
Author(s):  
E. Hanneman ◽  
B. Trevarrow ◽  
W.K. Metcalfe ◽  
C.B. Kimmel ◽  
M. Westerfield

In the ventral hindbrain and spinal cord of zebrafish embryos, the first neurones that can be identified appear as single cells or small clusters of cells, distributed periodically at intervals equal to the length of a somite. In the hindbrain, a series of neuromeres of corresponding length is present, and the earliest neurones are located in the centres of each neuromere. Young neurones within both the hindbrain and spinal cord were identified in live embryos using Nomarski optics, and histochemically by labelling for acetylcholinesterase activity and expression of an antigen recognized by the monoclonal antibody zn-1. Among them are individually identified hindbrain reticulospinal neurones and spinal motoneurones. These observations suggest that early development in these regions of the CNS reflects a common segmental pattern. Subsequently, as more neurones differentiate, the initially similar patterning of the cells in these two regions diverges. A continuous longitudinal column of developing neurones appears in the spinal cord, whereas an alternating series of large and small clusters of neurones is present in the hindbrain.


2013 ◽  
Author(s):  
Kathryn Wilson ◽  
Gianfranco Matrone ◽  
Carl Tucker ◽  
Patrick Hadoke ◽  
Christopher Kenyon ◽  
...  

2019 ◽  
Vol 42 ◽  
Author(s):  
Peter C. Mundy

Abstract The stereotype of people with autism as unresponsive or uninterested in other people was prominent in the 1980s. However, this view of autism has steadily given way to recognition of important individual differences in the social-emotional development of affected people and a more precise understanding of the possible role social motivation has in their early development.


2019 ◽  
Vol 42 ◽  
Author(s):  
Teodora Gliga ◽  
Mayada Elsabbagh

Abstract Autistic individuals can be socially motivated. We disagree with the idea that self-report is sufficient to understand their social drive. Instead, we underscore evidence for typical non-verbal signatures of social reward during the early development of autistic individuals. Instead of focusing on whether or not social motivation is typical, research should investigate the factors that modulate social drives.


Author(s):  
F. G. Zaki ◽  
E. Detzi ◽  
C. H. Keysser

This study represents the first in a series of investigations carried out to elucidate the mechanism(s) of early hepatocellular damage induced by drugs and other related compounds. During screening tests of CNS-active compounds in rats, it has been found that daily oral administration of one of these compounds at a dose level of 40 mg. per kg. of body weight induced diffuse massive hepatic necrosis within 7 weeks in Charles River Sprague Dawley rats of both sexes. Partial hepatectomy enhanced the development of this peculiar type of necrosis (3 weeks instead of 7) while treatment with phenobarbital prior to the administration of the drug delayed the appearance of necrosis but did not reduce its severity.Electron microscopic studies revealed that early development of this liver injury (2 days after the administration of the drug) appeared in the form of small dark osmiophilic vesicles located around the bile canaliculi of all hepatocytes (Fig. 1). These structures differed from the regular microbodies or the pericanalicular multivesicular bodies. They first appeared regularly rounded with electron dense matrix bound with a single membrane. After one week on the drug, these vesicles appeared vacuolated and resembled autophagosomes which soon developed whorls of concentric lamellae or cisterns characteristic of lysosomes (Fig. 2). These lysosomes were found, later on, scattered all over the hepatocytes.


Author(s):  
Eric Hallberg ◽  
Lina Hansén

The antennal rudiments in lepidopterous insects are present as disks during the larval stage. The tubular double-walled antennal disk is present beneath the larval antenna, and its inner layer gives rise to the adult antenna during the pupal stage. The sensilla develop from a cluster of cells that are derived from one stem cell, which gives rise to both sensory and enveloping cells. During the morphogenesis of the sensillum these cells undergo major transformations, including cell death. In the moth Agrotis segetum the pupal stage lasts about 14 days (temperature, 25°C). The antennae, clearly seen from the exterior, were dissected and fixed according to standard procedures (3 % glutaraldehyde in 0.15 M cacaodylate buffer, followed by 1 % osmiumtetroxide in the same buffer). Pupae from day 1 to day 8, of both sexes were studied.


2001 ◽  
Vol 7 (S2) ◽  
pp. 1012-1013
Author(s):  
Uyen Tram ◽  
William Sullivan

Embryonic development is a dynamic event and is best studied in live animals in real time. Much of our knowledge of the early events of embryogenesis, however, comes from immunofluourescent analysis of fixed embryos. While these studies provide an enormous amount of information about the organization of different structures during development, they can give only a static glimpse of a very dynamic event. More recently real-time fluorescent studies of living embryos have become much more routine and have given new insights to how different structures and organelles (chromosomes, centrosomes, cytoskeleton, etc.) are coordinately regulated. This is in large part due to the development of commercially available fluorescent probes, GFP technology, and newly developed sensitive fluorescent microscopes. For example, live confocal fluorescent analysis proved essential in determining the primary defect in mutations that disrupt early nuclear divisions in Drosophila melanogaster. For organisms in which GPF transgenics is not available, fluorescent probes that label DNA, microtubules, and actin are available for microinjection.


Sign in / Sign up

Export Citation Format

Share Document