Identification of Electric Conductivity and Impedance of Reinforced Concrete by Boundary Element Inverse Analysis

Author(s):  
Masato Yoshida ◽  
Kazuhiro Suga ◽  
M Ridha ◽  
Shigeru Aoki ◽  
Kenji Amaya
2013 ◽  
Vol 686 ◽  
pp. 261-265 ◽  
Author(s):  
M. Ihsan ◽  
Syarizal Fonna ◽  
M. Ridha ◽  
Syifaul Huzni ◽  
A.K. Arrifin

The corrosion of structures is needed to be identified early to prevent any severe damage of buildings. The conventional technique such as potential mapping for diagnosing of reinforced concrete corrosion has been used widely in the field. However, the method has limitation such as less accuracy, laborious and time-consuming. This study is conducted to develop boundary element method 3 dimensions by considering polarization curves of anode and cathode for corrosion simulation and analyzed the influences of anode profiles for RC corrosion simulation. In this method, the potential in concrete domain was modeled by Laplace’s equation. The anode and cathode areas were represented by each polarization curves. The numerical simulation result shows that the boundary element method 3 dimensions successfully solved the Laplace’s equation in order to simulate corrosion phenomenon of reinforced concrete. The influences of anode profiles for RC corrosion simulation have been analyzed. Further works are needed to reduce the computational effort of corrosion simulation.


Author(s):  
Alejandro Enfedaque ◽  
Marcos G. Alberti ◽  
Jaime C. Gálvez ◽  
Pedro Cabanas

Fibre reinforced concrete (FRC) has become an alternative for structural applications due its outstanding mechanical properties. The appearance of new types of fibres and the fibre cocktails that can be configured mixing them has created FRC that clearly exceed the minimum mechanical properties required in the standards. Consequently, in order to take full advantage of the contribution of the fibres in construction projects, it is of great interest to have constitutive models that simulate the behaviour of the materials. This study aimed to simulate the fracture behaviour of five types of FRC, three with steel hooked fibres, one with a combination of two types of steel fibres and one with a combination of polyolefin fibres and two types of steel fibres, by means of an inverse analysis based on the cohesive crack approach. The results of the numerical simulations defined the softening functions of each FRC formulation and have pointed out the synergies that are created through use of fibre cocktails. The information obtained might suppose a remarkable advance for designers using high-performance FRC in structural elements.


Author(s):  
Keisuke Hayabusa ◽  
Hirotsugu Inoue ◽  
Kikuo Kishimoto ◽  
Toshikazu Shibuya

Sign in / Sign up

Export Citation Format

Share Document