Time-resolved Imaging of H2 + (D2 +) Nuclear Wave Packets

Author(s):  
Th. Ergler ◽  
A. Rudenko ◽  
B. Feuerstein ◽  
K. Zrost ◽  
C. D. Schröter ◽  
...  
2019 ◽  
Vol 21 (26) ◽  
pp. 14090-14102 ◽  
Author(s):  
Y. Malakar ◽  
W. L. Pearson ◽  
M. Zohrabi ◽  
B. Kaderiya ◽  
Kanaka Raju P. ◽  
...  

We report the results of a time-resolved coincident ion momentum imaging experiment probing nuclear wave packet dynamics in the strong-field ionization and dissociation of iodomethane (CH3I).


Author(s):  
A. Rudenko ◽  
Th. Ergler ◽  
B. Feuerstein ◽  
K. Zrost ◽  
C.D. Schröter ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yao Lu ◽  
Qi Zhang ◽  
Qiang Wu ◽  
Zhigang Chen ◽  
Xueming Liu ◽  
...  

AbstractThe field of nonlinear optics has grown substantially in past decades, leading to tremendous progress in fundamental research and revolutionized applications. Traditionally, the optical nonlinearity for a light wave at frequencies beyond near-infrared is observed with very high peak intensity, as in most materials only the electronic nonlinearity dominates while ionic contribution is negligible. However, it was shown that the ionic contribution to nonlinearity can be much larger than the electronic one in microwave experiments. In the terahertz (THz) regime, phonon polariton may assist to substantially trigger the ionic nonlinearity of the crystals, so as to enhance even more the nonlinear optical susceptibility. Here, we experimentally demonstrate a giant second-order optical nonlinearity at THz frequency, orders of magnitude higher than that in the visible and microwave regimes. Different from previous work, the phonon-light coupling is achieved under a phase-matching setting, and the dynamic process of nonlinear THz generation is directly observed in a thin-film waveguide using a time-resolved imaging technique. Furthermore, a nonlinear modification to the Huang equations is proposed to explain the observed nonlinearity enhancement. This work brings about an effective approach to achieve high nonlinearity in ionic crystals, promising for applications in THz nonlinear technologies.


2011 ◽  
Vol 16 (12) ◽  
pp. 120510 ◽  
Author(s):  
Matthew T. Rinehart ◽  
Tyler K. Drake ◽  
Francisco E. Robles ◽  
Lisa C. Rohan ◽  
David Katz ◽  
...  

2015 ◽  
Vol 21 (S3) ◽  
pp. 1911-1912
Author(s):  
William A. Hubbard ◽  
E. R. White ◽  
Alexander Kerelsky ◽  
G. Jasmin ◽  
Jared J. Lodico ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7744
Author(s):  
Ye Tian ◽  
Ming Wei ◽  
Lijun Wang ◽  
Yuankai Hong ◽  
Dan Luo ◽  
...  

Due to the unique advantages of two-photon technology and time-resolved imaging technology in the biomedical field, attention has been paid to them. Gold clusters possess excellent physicochemical properties and low biotoxicity, which make them greatly advantageous in biological imaging, especially for in vivo animal imaging. A gold nanocluster was coupled with dihydrolipoic acid to obtain a functionalized nanoprobe; the material displayed significant features, including a large two-photon absorption cross-section (up to 1.59 × 105 GM) and prolonged fluorescence lifetime (>300 ns). The two-photon and time-resolution techniques were used to perform cell imaging and in vivo imaging.


Sign in / Sign up

Export Citation Format

Share Document