Predicting Types of Protein-Protein Interactions Using a Multiple-Instance Learning Model

Author(s):  
Hiroshi Yamakawa ◽  
Koji Maruhashi ◽  
Yoshio Nakao
2020 ◽  
Author(s):  
Jiarui Feng ◽  
Amanda Zeng ◽  
Yixin Chen ◽  
Philip Payne ◽  
Fuhai Li

AbstractUncovering signaling links or cascades among proteins that potentially regulate tumor development and drug response is one of the most critical and challenging tasks in cancer molecular biology. Inhibition of the targets on the core signaling cascades can be effective as novel cancer treatment regimens. However, signaling cascades inference remains an open problem, and there is a lack of effective computational models. The widely used gene co-expression network (no-direct signaling cascades) and shortest-path based protein-protein interaction (PPI) network analysis (with too many interactions, and did not consider the sparsity of signaling cascades) were not specifically designed to predict the direct and sparse signaling cascades. To resolve the challenges, we proposed a novel deep learning model, deepSignalingLinkNet, to predict signaling cascades by integrating transcriptomics data and copy number data of a large set of cancer samples with the protein-protein interactions (PPIs) via a novel deep graph neural network model. Different from the existing models, the proposed deep learning model was trained using the curated KEGG signaling pathways to identify the informative omics and PPI topology features in the data-driven manner to predict the potential signaling cascades. The validation results indicated the feasibility of signaling cascade prediction using the proposed deep learning models. Moreover, the trained model can potentially predict the signaling cascades among the new proteins by transferring the learned patterns on the curated signaling pathways. The code was available at: https://github.com/fuhaililab/deepSignalingPathwayPrediction.


Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2779
Author(s):  
Ionut Dragomir ◽  
Adnan Akbar ◽  
John W. Cassidy ◽  
Nirmesh Patel ◽  
Harry W. Clifford ◽  
...  

Sporadic cancer develops from the accrual of somatic mutations. Out of all small-scale somatic aberrations in coding regions, 95% are base substitutions, with 90% being missense mutations. While multiple studies focused on the importance of this mutation type, a machine learning method based on the number of protein–protein interactions (PPIs) has not been fully explored. This study aims to develop an improved computational method for driver identification, validation and evaluation (DRIVE), which is compared to other methods for assessing its performance. DRIVE aims at distinguishing between driver and passenger mutations using a feature-based learning approach comprising two levels of biological classification for a pan-cancer assessment of somatic mutations. Gene-level features include the maximum number of protein–protein interactions, the biological process and the type of post-translational modifications (PTMs) while mutation-level features are based on pathogenicity scores. Multiple supervised classification algorithms were trained on Genomics Evidence Neoplasia Information Exchange (GENIE) project data and then tested on an independent dataset from The Cancer Genome Atlas (TCGA) study. Finally, the most powerful classifier using DRIVE was evaluated on a benchmark dataset, which showed a better overall performance compared to other state-of-the-art methodologies, however, considerable care must be taken due to the reduced size of the dataset. DRIVE outlines the outstanding potential that multiple levels of a feature-based learning model will play in the future of oncology-based precision medicine.


2011 ◽  
Vol 49 (08) ◽  
Author(s):  
LC König ◽  
M Meinhard ◽  
C Sandig ◽  
MH Bender ◽  
A Lovas ◽  
...  

1974 ◽  
Vol 31 (03) ◽  
pp. 403-414 ◽  
Author(s):  
Terence Cartwright

SummaryA method is described for the extraction with buffers of near physiological pH of a plasminogen activator from porcine salivary glands. Substantial purification of the activator was achieved although this was to some extent complicated by concomitant extraction of nucleic acid from the glands. Preliminary characterization experiments using specific inhibitors suggested that the activator functioned by a similar mechanism to that proposed for urokinase, but with some important kinetic differences in two-stage assay systems. The lack of reactivity of the pig gland enzyme in these systems might be related to the tendency to protein-protein interactions observed with this material.


2020 ◽  
Author(s):  
Salvador Guardiola ◽  
Monica Varese ◽  
Xavier Roig ◽  
Jesús Garcia ◽  
Ernest Giralt

<p>NOTE: This preprint has been retracted by consensus from all authors. See the retraction notice in place above; the original text can be found under "Version 1", accessible from the version selector above.</p><p><br></p><p>------------------------------------------------------------------------</p><p><br></p><p>Peptides, together with antibodies, are among the most potent biochemical tools to modulate challenging protein-protein interactions. However, current structure-based methods are largely limited to natural peptides and are not suitable for designing target-specific binders with improved pharmaceutical properties, such as macrocyclic peptides. Here we report a general framework that leverages the computational power of Rosetta for large-scale backbone sampling and energy scoring, followed by side-chain composition, to design heterochiral cyclic peptides that bind to a protein surface of interest. To showcase the applicability of our approach, we identified two peptides (PD-<i>i</i>3 and PD-<i>i</i>6) that target PD-1, a key immune checkpoint, and work as protein ligand decoys. A comprehensive biophysical evaluation confirmed their binding mechanism to PD-1 and their inhibitory effect on the PD-1/PD-L1 interaction. Finally, elucidation of their solution structures by NMR served as validation of our <i>de novo </i>design approach. We anticipate that our results will provide a general framework for designing target-specific drug-like peptides.<i></i></p>


Sign in / Sign up

Export Citation Format

Share Document