mechanical erosion

Keyword(s):  
1996 ◽  
Vol 33 (5) ◽  
pp. 664-675 ◽  
Author(s):  
Scott R. Dallimore ◽  
Stephen A. Wolfe ◽  
Steven M. Solomon

A long-term sediment budget (1947−1985) for northern Richards Island shows that, when ground ice and offshore erosion are accounted for, there is a near balance between headland erosion and coastal deposition. Excess ice constitutes about 20% of the total volume of eroded material from the headlands, with massive ground ice contributing nearly 9% and segregated ice lenses and ice wedges making up the remainder. Coastal response to major storms in 1987 and 1993 suggests that erosion is episodic, with short periods of intense disruption followed by readjustment of cliff profiles. Processes characteristic of this environment include mechanical erosion of ice-bonded sediments creating unstable erosional niches, mechanical failure of niches along ice-wedge planes, and longer term thermal erosion of ice-bonded sediments. Where ice contents are high, localized thaw slumps initiated by coastal erosion may retreat at rates substantially higher than those observed at other sections of the coast. Cliff-top retreat rates may be out of phase with storm-event chronology.


2021 ◽  
Vol 71 (5) ◽  
pp. 682-690
Author(s):  
Golla Rama Rao ◽  
Ivaturi Srikanth ◽  
K. Laxma Reddy

Organo-Montmorillonite (o-MMT) nanoclay added polybenzoxazine resin (type I composites) were prepared with varying amounts of clay (0, 1, 2, 4 and 6 wt %). Clay dispersion, changes in curing behaviour and thermal stability were assessed in type I composites. Findings from these studies of type I composites were used to understand thermal stability, mechanical, and mass ablation rate behaviour of nanoclay added carbon fiber reinforced polybenzoxazine composites (type II). Interlaminar shear strength and flexural strength of type II composites increase by 25% and 27%, respectively at 2 wt% addition of clay. An oxy-acetylene torch test with a constant heat flux of 125 w/cm2 was used to investigate mass ablation rate of type II composites. The ablation rate has increased as the weight percentage of clay has increased. This is contradicting to type I composites with up to 6 wt% clay and type II composites with up to 4 wt% clay, which have improved thermal stability. The microstructure of the ablated composites was examined using scanning electron microscopy. Increased ablation rates are due to the reaction of charred matrix with nanoclay, which exposes bare fibers to the ablation front, resulting in higher mechanical erosion losses.


2021 ◽  
Author(s):  
V. Pranay ◽  
S. Ojha ◽  
Raghavendra G ◽  
G. Dheeraj ◽  
A. Anjali

Abstract This paper reports the mechanical-erosion wear properties of extracted silica from Biowaste (rice husk) and pure rice husk-filled epoxy composites. A comparison is made on the influence of dispersed silica and rice husk particles on the properties of the epoxy composites. The composites are fabricated by hand lay-up process. The specimens are tested as per the ASTM standards for three different filler loadings of each silica and rice husk separately (2,4 and 6wt%). It is perceived that with the increase in the rice husk filler loading in epoxy, there is a decline in tensile, flexural, and erosion wear properties. It is also evident that, with the increase in silica content until 6%, the tensile and flexural strength have displayed consistent enhancement. Alongside, erosion results confirm that the properties of the pure epoxy had exhibited transition from semi-brittle to ductile nature due to the addition of silica fillers.


2001 ◽  
Vol 56 (1) ◽  
pp. 51-61 ◽  
Author(s):  
Jean-François Buoncristiani ◽  
Michel Campy

AbstractMeasures of present-day glacial erosion vary widely with the technique employed. This paper quantifies the glacial material trapped in a proglacial lake during the Würm glacial period. The Combe d'Ain site was occupied by a meltwater lake where all the detrital material entering it from the Jura glacier accumulated. Sediment yield is computed from three factors: (1) the size of the sediment source area, (2) the length of time the system operated, and (3) the volume of sediment trapped. The sediment budget of the lake system suggests a detrital sediment yield of 4400±1700 metric tons per square kilometer and per calendar year. This represents a denudation rate of 1.6±0.6 mm per year, illustrating that mechanical erosion by the Jura glacier is more intensive than other processes of erosion.


2021 ◽  
Author(s):  
Stefan Haselberger ◽  
Lisa-Maria Ohler ◽  
Jan-Christoph Otto ◽  
Robert R. Junker ◽  
Thomas Glade ◽  
...  

<p>Proglacial slopes provide suitable conditions to observe the co-development of abiotic and biotic systems. The frequency and magnitude of geomorphic processes and composition of plants govern this interplay, which is described in the biogeormorphic feedback window for glacier forelands. The study sets out to quantify small-scale sediment transport via mechanical erosion plots along a plant cover gradient and to investigate the multidirectional interactions between abiotic and biotic processes. We aim to generate quantitative data to test the biogeomorphic feedback window.</p><p>Small-scale biogeomorphic interactions were investigated on 30 test plots of 2 x 3 m size on proglacial slopes of the Gepatschferner (Kaunertal) in the Austrian Alps during snow-free summer months over three consecutive years. The experimental plots were established on slopes along a plant cover gradient. A detailed vegetation survey was carried out to capture biotic conditions and specific sediment yield was measured at each plot. Species abundance and composition at each site, as well as plant functional types reflected successional stages.</p><p>We observed a strong decline in geomorphic activity on plots with above 30% plant cover. Mean monthly rates of specific sediment yield decreased from 111 g m<sup>-2 </sup>to 37 g m<sup>-2</sup>. Non-metric multidimensional scaling showed distinct vegetation composition for the three stages of biogeomorphic succession. Quantified process rates and observed vegetation composition support the concept of biogeomorphic feedback windows. The findings help to narrow down a stage during succession where the importance of biotic processes start to dominate.</p>


Author(s):  
Mario Parise

Karst refers to the processes of chemical dissolution and mechanical erosion acting on soluble rocks (mainly carbonates and evaporites), and to the surface and subsurface landforms thus produced. In their book Karst Hydrogeology and Geomorphology, Derek Ford and Paul Williams state that about 20 percent of the emerged Earth’s surface is karst, with caves representing a typical and well-known expression (see Ford and Williams 2007, cited under Karst Hydrogeology: The Importance of Karst Aquifers). Together with caves, karst lands are characterized by underground drainages and by scarce presence of water running at the surface. Water, rather than flowing on the ground as watercourses and rivers, rapidly infiltrates underground through networks of fissures and conduits, which combine to the diffuse flow in recent carbonates, giving origin to the complex systems of karst caves. Karst environments and caves have been of interest to humans since the earliest civilizations—for water supply, as settlements or areas of protection, or to bury the dead. Some of the more ancient testimonies of art are within caves, such as those in several caverns of the Mediterranean area (including, to mention the most remarkable, Lascaux and Chauvet in France, Altamira in Spain, and Porto Badisco in Italy). Karst research, which is linked to caving exploration, had a great impulse in the second half of the 20th century. Caves have been recognized as a very precious and peculiar environment, where traces of the past, in terms of sediments (see Sasowsky and Mylroie 2004, cited under Cave Deposits) or evidence of paleoclimate (see Fairchild and Baker 2012, cited under Contribution to Paleoclimatic Studies), have been preserved, often in great detail, in contrast to what occurs at Earth’s surface, where most of it is being destroyed, canceled, or covered by later processes. As a consequence, the classical studies about speleogenesis (that is, the origin of caves) and on geomorphology of the underground settings have developed in integration with those by researches in other disciplines, covering, among others, cave sediments, biospeleology and microbiology, and dating of speleothems for paleoclimatic and paleoenvironmental studies. Further, the expansion of built-up environments and construction in karst lands resulted in the interaction among natural hazards in karst and society, as pointed out in Parise and Gunn 2007 (under Karst Hazards), and Gutiérrez, et al. 2014 (under Human Impacts and Land Management in Karst), bringing to general attention the issue of fragility of karst, due to its peculiar hydrologic and hydrogeological features. As a matter of fact, Goldscheider and Drew 2007 (under Karst Hydrogeology: The Importance of Karst Aquifers) documents that karst aquifers are of high quality and represent between 20 and 25 percent of the world’s drinking resources, but that they are also extremely vulnerable and potentially threatened by a variety of forms of pollution.


Sign in / Sign up

Export Citation Format

Share Document