Control of a Hysteretic Structural System in Base Isolation Scheme

Author(s):  
Jing Zhou ◽  
Changyun Wen
Author(s):  
R. A. Poole ◽  
J. E. Clendon

Parliament House is to be partially demolished and rebuilt, extended within the existing perimeter envelope, refurbished and replanned except for the major public spaces, seismically upgraded by means of base isolation and enhancement of existing foundations, basement walls, ground floor, upper floor walls and floors. This paper describes the assessment of appropriate seismic loads, the structural system, the analysis and design of the retrofitted structure. Anticipated construction procedures and difficulties are also addressed.


2009 ◽  
Vol 4 (3) ◽  
pp. 229-238 ◽  
Author(s):  
Yasuhiro Tsuneki ◽  
◽  
Shingo Torii ◽  
Katsuhide Murakami ◽  
Toshiyuki Sueoka ◽  
...  

For buildings of normal earthquake-resistant construction, it is essential to provide their structural frame with sufficient rigidity and strength horizontally and vertically, ensuring a uniform distribution of rigidity and strength in the plane. To this end, it is typical that those buildings adopt the same type of construction and structural system. On the other hand, in buildings of general base-isolation construction, their upper structure, which is supported by a base isolation layer, undergoes lessened seismic forces and therefore is able to tolerate concentration of rigidity and strength. This makes them available for construction with any types of structural systems, which in turn allows new structural planning realizing a greater freedom in architectural design; the same type of construction and structural system for the upper structure is generally adopted. In contrast, when a high-rise building is provided with an isolation layer in an intermediate level, its upper structure, which is placed above the isolation layer, has high seismic resistance as a seismic isolation structure. And a mass damper effect contributes to decrease in seismic responses in the lower structure, ensuring high seismic resistance of a building. This paper describes the physical properties of a seismic isolation layer system which is built at an middle-story of a building. It also introduce buildings by which potentials for new architectural planning are proposed through the use of this system.


Author(s):  
Najia Karimi ◽  
Roozbeh Sarem

This review presents the high performance of failure-resistant structural device system for the sustainable and flexible buildings. Firstly, the motivation and basic principles as well as methodology of the developing device system are explicitly illustrated. Then, the structural detail and seismic response of base isolation systems, namely, lead Rubber Bearing (LRB), HDLRB isolators, viscous damper (Base Isolation with in-Parallel Dissipation system: BIPD) and sliding bearing isolator (Base Isolation with in-Series Sliding system: BISS) are summarized. The theoretical and experimental study results was shown that all four types of isolator system can be able to minimize damage after seismic an earthquake to the structural system. The viscous damper devices and energy dissipate as well as viscoelastic and fluid viscous dampening can be able to enhance the energy dissipation capacity of structural system under an earthquake loading. A placement of L shape, shear walls at the structural configuration plan is given more efficient behavior under seismic load than all other placements of shear walls at the building’s configuration. Many numerical specimens of tunnel form buildings were constructed and modelled to analyze and interpreted the dynamic and static cyclic response of structures against seismic force. The deformation of the dynamic response of tunnel form building was smaller by using Carbon Fiber Reinforced Polymer (CFRP) repairing and retrofitting method. Contradictory, the usage of base isolations, energy dissipation devices, shear walls and tunnel form buildings can enhance the efficiency of structures under seismic force by reducing the economic cost saving in their construction.


2011 ◽  
Vol 255-260 ◽  
pp. 2568-2572
Author(s):  
Hai Qing Liu ◽  
Xiao Guo ◽  
Hao Wang

This paper expounded the basic principle of the base-isolated structures. Established the equations of motion of single particle and multi-particle base isolation structural system. Adopted multi-layer and high-level framework groups, added laminated rubber bearings in the bottom respectively, input EL Centro seismic waves, and then the modal, time-history, base shear are compared and analyzed. By comparing the results obtained: base-isolated structure used in high-rise building can decrease a certain degree of the seismic response, in the multi-layer building the effect was more apparent. It also confirmed that the application of base isolation on multi-layer and high-level framework in the existing conditions still had some limitations.


2017 ◽  
Vol 109 (7) ◽  
pp. 3254-3261
Author(s):  
Jun LEI ◽  
Dong XU ◽  
José Antonio Lozano-Galant ◽  
María Nogal ◽  
José Turmo

Sign in / Sign up

Export Citation Format

Share Document