Comparing Transmission Electron Microscopy (TEM) and Tomographic Atom Probe (TAP) through Measurements of Thin Multilayers

Author(s):  
Tobias Heil ◽  
Patrick Stender ◽  
Guido Schmitz ◽  
Helmut Kohl
Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 727
Author(s):  
Shiyun Jin ◽  
Huifang Xu ◽  
Seungyeol Lee

The enigmatic Bøggild intergrowth in iridescent labradorite crystals was revisited in light of recent work on the incommensurately modulated structures in the intermediated plagioclase. Five igneous samples and one metamorphic labradorite sample with various compositions and lamellar thicknesses were studied in this paper. The lamellar textures were characterized with conventional transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM). The compositions of individual lamellae were analyzed with high-resolution energy-dispersive X-ray spectroscopy (EDS) mapping and atom probe tomography (APT). The average structure states of the studied samples were also compared with single-crystal X-ray diffraction data (SC-XRD). The Na-rich lamellae have a composition of An44–48, and the Ca-rich lamellae range from An56 to An63. Significant differences between the lamellar compositions of different samples were observed. The compositions of the Bøggild intergrowth do not only depend on the bulk compositions, but also on the thermal history of the host rock. The implications on the subsolidus phase relationships of the plagioclase feldspar solid solution are discussed. The results cannot be explained by a regular symmetrical solvus such as the Bøggild gap, but they support an inclined two-phase region that closes at low temperature.


2017 ◽  
Vol 23 (2) ◽  
pp. 329-335 ◽  
Author(s):  
Chang-Min Kwak ◽  
Young-Tae Kim ◽  
Chan-Gyung Park ◽  
Jae-Bok Seol

AbstractTwo challenges exist in laser-assisted atom probe tomography (APT). First, a drastic decline in mass-resolving power is caused, not only by laser-induced thermal effects on the APT tips of bulk oxide materials, but also the associated asymmetric evaporation behavior; second, the field evaporation mechanisms of bulk oxide tips under laser illumination are still unclear due to the complex relations between laser pulse and oxide materials. In this study, both phenomena were investigated by depositing Ni- and Co-capping layers onto the bulk LaAlO3 tips, and using stepwise APT analysis with transmission electron microscopy (TEM) observation of the tip shapes. By employing the metallic capping, the heating at the surface of the oxide tips during APT analysis became more symmetrical, thereby enabling a high mass-resolving power in the mass spectrum. In addition, the stepwise microscopy technique visualized tip shape evolution during APT analysis, thereby accounting for evaporation sequences at the tip surface. The combination of “capping” and “stepwise APT with TEM,” is applicable to any nonconductors; it provides a direct observation of tip shape evolution, allows determination of the field evaporation strength of oxides, and facilitates understanding of the effects of ultrafast laser illumination on an oxide tip.


2019 ◽  
Vol 55 (6) ◽  
pp. 1382-1403 ◽  
Author(s):  
Josiah B. Lewis ◽  
Christine Floss ◽  
Dieter Isheim ◽  
Tyrone L. Daulton ◽  
David N. Seidman ◽  
...  

Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 749 ◽  
Author(s):  
Jun Wu ◽  
Roumen Petrov ◽  
Sebastian Kölling ◽  
Paul Koenraad ◽  
Loic Malet ◽  
...  

Micro- to nano-scale characterization of the microstructures in the white etching layer (WEL), observed in a Dutch R260 Mn grade rail steel, was performed via various techniques. Retained austenite in the WEL was identified via electron backscatter diffraction (EBSD), automatic crystallographic orientation mapping in transmission electron microscopy (ACOM-TEM), and X-ray diffraction (XRD). EBSD and ACOM-TEM methods were used to quantify grains (size range: 50 nm–4 μm) in the WEL. Transmission electron microscopy (TEM) was used to identify complex heterogeneous microstructural morphologies in the WEL: Nano-twinning substructure with high dislocation density in the WEL close to the rail surface and untransformed cementite and dislocations in the WEL close to the pearlite matrix. Furthermore, atom probe tomography (APT) revealed a heterogeneous through-thickness distribution of alloying elements in the WEL. Accordingly, the WEL is considered a multi-layered martensitic microstructure. These findings are supported by the temperature calculations from the shape analysis of the manganese profile from APT measurements, related to manganese diffusion. The deformation characteristics of the WEL and the pearlite beneath the WEL are discussed based on the EBSD measurements. The role of deformation in the martensitic phase transformation for WEL formation is discussed.


Sign in / Sign up

Export Citation Format

Share Document