On Evaluation of the Mean Gravity Gradient Within the Topography

Author(s):  
R Tenzer ◽  
A Ellmann
2012 ◽  
Vol 31 (1) ◽  
pp. 12-19
Author(s):  
Robert Tenzer

In the theory of the orthometric height, the mean value of gravity along the plumbline between the geoid and the earth's surface is defined as the integral mean. To determine the mean gravity from the gravity observations realized at the physical surface of the earth, the actual topographical density distribution and vertical change of gravity with depth have to be known. In Helmert's (1890) definition of the orthometric height, the assumption of the linear change of normal gravity is used adopting the constant topographical density distribution. The mean value of gravity is then approximately evaluated so that the observed gravity of a point at the earth's surface is reduced to the mid-point of the plumbline by Poincaré-Prey's gravity gradient. To avoid the problems related to the determination of mean gravity, Molodensky (1945) formulated the different concept. In his theory of the normal height, the mean value of the normal gravity along the ellipsoidal normal between the ellipsoid surface and telluroid is considered. The mean normal gravity is then evaluated explicitly without any hypothesis about the topographical density distribution and vertical gradient of actual gravity. In this paper, the corrections to Helmert's orthometric height are formulated based on the comparison of the integral mean of gravity and Poincaré-Prey's gravity reduction. As follows from the results of the numerical investigation, the orthometric heights can also be determined with a reasonable accuracy if the sufficient information about topographical density and gravity are available.


Cephalalgia ◽  
1985 ◽  
Vol 5 (2_suppl) ◽  
pp. 229-231 ◽  
Author(s):  
Giordano Invernizzi ◽  
Costanzo Gala ◽  
Emilio Sacchetti

We have evaluated the incidence and the gravity of recent and early stressful life events in 149 patients with headache and in 43 healthy controls. The incidence of early stressful events was the same for the headache patients and the controls, and for the three subtypes of headache patients. Patients with headache had undergone more recent stressful events than the control individuals, and the difference was due to patients with migraine. The mean gravity of the recent stressful events did not differ significantly. This probably indicates that appearance of headache is not so much associated with the gravity of the events as with the fact that they have occurred in the lives of patients with other biological and/or psychological characteristics with which the stress interacts.


Geophysics ◽  
2013 ◽  
Vol 78 (4) ◽  
pp. G81-G88 ◽  
Author(s):  
Carlos Cevallos ◽  
Peter Kovac ◽  
Sharon J. Lowe

We apply equipotential surface curvatures to airborne gravity gradient data. The mean and differential curvature of the equipotential surface, the curvature of the gravity field line, the zero contour of the Gaussian curvature, and the shape index improve the understanding and geologic interpretation of gravity gradient data. Their use is illustrated in model data and applied to FALCON airborne gravity gradiometer data from the Canning Basin, Australia.


2014 ◽  
Vol 742 ◽  
pp. 35-49 ◽  
Author(s):  
Charlotte Gladstone ◽  
Andrew W. Woods

AbstractNew experiments are presented which explore the dynamics of a turbulent buoyant plume produced by a vertically distributed linear source of buoyancy of strength $f$ per unit height. In a uniform environment, the plume volume flux increases with height from the base of the source, $z$, as $q(z) = {2^{-1/3}} {\pi }^{2/3} \alpha ^{4/3} f^{1/3} z^2$ where the entrainment coefficient, $\alpha = 0.09\pm 0.01$. In an enclosed space, with a net upward vertical ventilation flow $Q_V$, the buoyant plume generates a steady ambient stratification. The lowest part of the space, $z<h_i$, where $q(h_i)=Q_V$, is filled with fluid supplied by the ventilation flow and there is a net upflow in the ambient. Above this, $z>h_i$, the ambient fluid is linearly stratified with a reduced gravity gradient $f/Q_V$, and has no net vertical motion. Instead, for $z>h_i$, the time-averaged volume flux in the plume equals the ventilation flow. The intermittent entrainment of ambient fluid into the plume is now matched by intermittent detrainment from the plume, and the mean buoyancy in the plume relative to the ambient remains constant. The supply of fresh ventilation fluid to the ambient in the linearly stratified zone only occurs through the local detrainment and consequent horizontal intrusion of fluid from the plume. This has key implications for design of ventilation systems, in which there may be vertically distributed sources of buoyancy.


1966 ◽  
Vol 24 ◽  
pp. 170-180
Author(s):  
D. L. Crawford

Early in the 1950's Strömgren (1, 2, 3, 4, 5) introduced medium to narrow-band interference filter photometry at the McDonald Observatory. He used six interference filters to obtain two parameters of astrophysical interest. These parameters he calledlandc, for line and continuum hydrogen absorption. The first measured empirically the absorption line strength of Hβby means of a filter of half width 35Å centered on Hβand compared to the mean of two filters situated in the continuum near Hβ. The second index measured empirically the Balmer discontinuity by means of a filter situated below the Balmer discontinuity and two above it. He showed that these two indices could accurately predict the spectral type and luminosity of both B stars and A and F stars. He later derived (6) an indexmfrom the same filters. This index was a measure of the relative line blanketing near 4100Å compared to two filters above 4500Å. These three indices confirmed earlier work by many people, including Lindblad and Becker. References to this earlier work and to the systems discussed today can be found in Strömgren's article inBasic Astronomical Data(7).


1966 ◽  
Vol 25 ◽  
pp. 46-48 ◽  
Author(s):  
M. Lecar

“Dynamical mixing”, i.e. relaxation of a stellar phase space distribution through interaction with the mean gravitational field, is numerically investigated for a one-dimensional self-gravitating stellar gas. Qualitative results are presented in the form of a motion picture of the flow of phase points (representing homogeneous slabs of stars) in two-dimensional phase space.


1966 ◽  
Vol 25 ◽  
pp. 373
Author(s):  
Y. Kozai

The motion of an artificial satellite around the Moon is much more complicated than that around the Earth, since the shape of the Moon is a triaxial ellipsoid and the effect of the Earth on the motion is very important even for a very close satellite.The differential equations of motion of the satellite are written in canonical form of three degrees of freedom with time depending Hamiltonian. By eliminating short-periodic terms depending on the mean longitude of the satellite and by assuming that the Earth is moving on the lunar equator, however, the equations are reduced to those of two degrees of freedom with an energy integral.Since the mean motion of the Earth around the Moon is more rapid than the secular motion of the argument of pericentre of the satellite by a factor of one order, the terms depending on the longitude of the Earth can be eliminated, and the degree of freedom is reduced to one.Then the motion can be discussed by drawing equi-energy curves in two-dimensional space. According to these figures satellites with high inclination have large possibilities of falling down to the lunar surface even if the initial eccentricities are very small.The principal properties of the motion are not changed even if plausible values ofJ3andJ4of the Moon are included.This paper has been published in Publ. astr. Soc.Japan15, 301, 1963.


1966 ◽  
Vol 25 ◽  
pp. 197-222 ◽  
Author(s):  
P. J. Message

An analytical discussion of that case of motion in the restricted problem, in which the mean motions of the infinitesimal, and smaller-massed, bodies about the larger one are nearly in the ratio of two small integers displays the existence of a series of periodic solutions which, for commensurabilities of the typep+ 1:p, includes solutions of Poincaré'sdeuxième sortewhen the commensurability is very close, and of thepremière sortewhen it is less close. A linear treatment of the long-period variations of the elements, valid for motions in which the elements remain close to a particular periodic solution of this type, shows the continuity of near-commensurable motion with other motion, and some of the properties of long-period librations of small amplitude.To extend the investigation to other types of motion near commensurability, numerical integrations of the equations for the long-period variations of the elements were carried out for the 2:1 interior case (of which the planet 108 “Hecuba” is an example) to survey those motions in which the eccentricity takes values less than 0·1. An investigation of the effect of the large amplitude perturbations near commensurability on a distribution of minor planets, which is originally uniform over mean motion, shows a “draining off” effect from the vicinity of exact commensurability of a magnitude large enough to account for the observed gap in the distribution at the 2:1 commensurability.


1974 ◽  
Vol 22 ◽  
pp. 193-203
Author(s):  
L̆ubor Kresák

AbstractStructural effects of the resonance with the mean motion of Jupiter on the system of short-period comets are discussed. The distribution of mean motions, determined from sets of consecutive perihelion passages of all known periodic comets, reveals a number of gaps associated with low-order resonance; most pronounced are those corresponding to the simplest commensurabilities of 5/2, 2/1, 5/3, 3/2, 1/1 and 1/2. The formation of the gaps is explained by a compound effect of five possible types of behaviour of the comets set into an approximate resonance, ranging from quick passages through the gap to temporary librations avoiding closer approaches to Jupiter. In addition to the comets of almost asteroidal appearance, librating with small amplitudes around the lower resonance ratios (Marsden, 1970b), there is an interesting group of faint diffuse comets librating in characteristic periods of about 200 years, with large amplitudes of about±8% in μ and almost±180° in σ, around the 2/1 resonance gap. This transient type of motion appears to be nearly as frequent as a circulating motion with period of revolution of less than one half that of Jupiter. The temporary members of this group are characteristic not only by their appearance but also by rather peculiar discovery conditions.


Sign in / Sign up

Export Citation Format

Share Document