Emergent Motion Characteristics of a Modular Robot through Genetic Algorithm

Author(s):  
Sunil Pranit Lal ◽  
Koji Yamada ◽  
Satoshi Endo
2003 ◽  
Vol 15 (2) ◽  
pp. 227-237 ◽  
Author(s):  
Eiichi Yoshida ◽  
◽  
Satoshi Murata ◽  
Akiya Kamimura ◽  
Kohji Tomita ◽  
...  

An evolutionary motion synthesis method using genetic algorithm (GA) is presented for self-reconfigurable modular robot M-TRAN designed to realize various robotic motions and three-dimensional structures. The proposed method is characterized by its capacity to derive feasible solutions for complex synthesis problem of M-TRAN through natural genetic representation. For this purpose, the behavior of the robot is described using a motion sequence including both the dynamic motions and configuration changes of the robot. It is a series of segments each of which can specify simultaneous motor actuations and selfreconfiguration by connection/disconnection, starting from a given initial configuration. This simple description can be straightforwardly encoded into genetic representation to which genetic operations can be applied in a natural manner. We adopt traveling distance achieved by the evolved motion as the fitness function of GA. To verify the effectiveness of the proposed method, we have conducted simulations of evolutionary motion synthesis for certain initial configurations. Consequently, we confirm various adaptive motions are acquired according to different initial configurations and fitness functions. We also verify the physical feasibility of the evolved motions through experiments using hardware module M-TRAN II.


2005 ◽  
Vol 11 (1) ◽  
pp. 3-17 ◽  
Author(s):  
Yangmin Li ◽  
Yugang Liu ◽  
Xiaoping Liu

In this paper, a genetic algorithm based back-propagation neural network suboptimal controller is developed to control the vibration of a nine-degrees-of-freedom modular robot. A finite-element method is used to model the modules of the robot, and the entire system dynamic equation is established using the substructure synthesis method. Then the joint stiffness parameters are identified based on the experimental modal analysis experiment. After modeling the whole structure with the models of the robotic modules and the joint parameters, simulations of the vibration control for the modular robot in several configurations are carried out. It is shown that the control method presented in this paper is effective at suppressing the residual vibrations of the modular robot.


Robotica ◽  
2002 ◽  
Vol 20 (5) ◽  
pp. 509-517 ◽  
Author(s):  
Yangmin Li ◽  
Xiaoping Liu ◽  
Zhaoyang Peng ◽  
Yugang Liu

SummaryThis paper discusses a technique for identifying the joint parameters of a modular robot in order to study the dynamic characteristics of the whole structure and to realise dynamic control. A method for identifying the joint parameters of the structure applying fuzzy logic combined with a genetic algorithm has been studied using a 9-DOF modular redundant robot. A Genetic Algorithm was used in the fuzzy optimisation, which helped to avoid converging to locally optimal solutions and made the results identified much more reasonable. The joint parameters of a 9-DOF modular redundant robot have been identified.


1994 ◽  
Vol 4 (9) ◽  
pp. 1281-1285 ◽  
Author(s):  
P. Sutton ◽  
D. L. Hunter ◽  
N. Jan

Sign in / Sign up

Export Citation Format

Share Document