miRNA Knockout Technology

Author(s):  
Zhiguo Wang
Keyword(s):  
1997 ◽  
Vol 3 (S2) ◽  
pp. 317-318
Author(s):  
David A. Sanan ◽  
Dale L. Newland

Build-up of visible atherosclerotic plaque in the arteries is readily quantifiable. The mouse and the rabbit provide useful models for understanding the pathogenesis of atherosclerosis by investigating the effects of genetic and dietary perturbations.Although the wild type mouse does not develop atherosclerosis, atherosclerosis susceptibility genes have been identified in some laboratory mouse strains which do. Furthermore, transgenic technology and gene targeting have produced genetically modified mice that express various apolipoproteins, enzymes and cofactors involved in human lipoprotein metabolism. Gene “knockout” technology allows transgene expression without interference from homologous genes. One notable “knockout” mouse, deficient in apolipoprotein E, develops spontaneous atherosclerosis on a normal chow diet. Transgenic modulations of the atherosclerotic responses of these highly susceptible mice are more pronounced and easily measured. Small, cheap and fast breeding, mice are convenient animal models. But to make mice susceptible to atherosclerosis, their genetic background has to be so drastically altered that the resulting lipoprotein metabolism may not model the human metabolism accurately enough.


2017 ◽  
Vol 216 (10) ◽  
pp. 3179-3198 ◽  
Author(s):  
Chao Yang ◽  
Jingchao Wu ◽  
Cecilia de Heus ◽  
Ilya Grigoriev ◽  
Nalan Liv ◽  
...  

End-binding proteins (EBs) are the core components of microtubule plus end tracking protein complexes, but it is currently unknown whether they are essential for mammalian microtubule organization. Here, by using CRISPR/Cas9-mediated knockout technology, we generated stable cell lines lacking EB2 and EB3 and the C-terminal partner-binding half of EB1. These cell lines show only mild defects in cell division and microtubule polymerization. However, the length of CAMSAP2-decorated stretches at noncentrosomal microtubule minus ends in these cells is reduced, microtubules are detached from Golgi membranes, and the Golgi complex is more compact. Coorganization of microtubules and Golgi membranes depends on the EB1/EB3–myomegalin complex, which acts as membrane–microtubule tether and counteracts tight clustering of individual Golgi stacks. Disruption of EB1 and EB3 also perturbs cell migration, polarity, and the distribution of focal adhesions. EB1 and EB3 thus affect multiple interphase processes and have a major impact on microtubule minus end organization.


1996 ◽  
Vol 12 (6) ◽  
pp. 577-583 ◽  
Author(s):  
Victor M. Morales ◽  
Scott B. Snapper ◽  
Richard S. Blumberg

2000 ◽  
Vol 150 (5) ◽  
pp. 1149-1160 ◽  
Author(s):  
Srikala Raghavan ◽  
Christoph Bauer ◽  
Gina Mundschau ◽  
Qingqin Li ◽  
Elaine Fuchs

The major epidermal integrins are α3β1 and hemidesmosome-specific α6β4; both share laminin 5 as ligand. Keratinocyte culture studies implicate both integrins in adhesion, proliferation, and stem cell maintenance and suggest unique roles for αβ1 integrins in migration and terminal differentiation. In mice, however, whereas ablation of α6 or β4 results in loss of hemidesmosomes, epidermal polarity, and basement membrane (BM) attachment, ablation of α3 only generates microblistering due to localized internal shearing of BM. Using conditional knockout technology to ablate β1 in skin epithelium, we have uncovered biological roles for αβ1 integrins not predicted from either the α3 knockout or from in vitro studies. In contrast to α3 null mice, β1 mutant mice exhibit severe skin blistering and hair defects, accompanied by massive failure of BM assembly/organization, hemidesmosome instability, and a failure of hair follicle keratinocytes to remodel BM and invaginate into the dermis. Although epidermal proliferation is impaired, a spatial and temporal program of terminal differentiation is executed. These results indicate that β1's minor partners in skin are important, and together, αβ1 integrins are required not only for extracellular matrix assembly but also for BM formation. This, in turn, is required for hemidesmosome stability, epidermal proliferation, and hair follicle morphogenesis. However, β1 downregulation does not provide the trigger to terminally differentiate.


Author(s):  
K. M. Kuldoshova ◽  
А. А. Akhunov ◽  
N. R. Khashimova ◽  
D. T. Babaeva ◽  
М. I. Nurmatova

This article investigates the effect of exogenous phytohormones ABA and IAA on the content of reducing sugars and endogenous phytohormones in cotton seedlings of varieties Porlok-4, obtained on the basis of gene knockout technology and a marker of associated breeding - Ravnak-1. Exogenous phytohormones (ABA and IAA) can significantly change the level of cotton resistance to unfavorable environmental factors. Under the action of exogenous ABA causes an increase of cotton resistance to salinity. Biotechnological cotton variety Ravnak-1 showed sensitivity to prolonged exposure to salinity in combination with phytohormones, increasing the content of reducing sugars and endogenous phytohormones, depending on the duration of salt stress. In the Porlok-4 variety, under the influence of salinity, the content of reducing sugars and endogenous phytohormones had an insignificant increase, due to the inherent adaptive capacity of the variety. The conducted studies allow us to conclude that phytohormones are actively involved in the formation of cotton resistance to the action of unfavorable environmental factors of an abiotic nature.


1999 ◽  
Vol 277 (6) ◽  
pp. G1259-G1267 ◽  
Author(s):  
Hiroshi Kono ◽  
Blair U. Bradford ◽  
Ming Yin ◽  
Kathleen K. Sulik ◽  
Dennis R. Koop ◽  
...  

The continuous intragastric enteral feeding protocol in the rat was a major development in alcohol-induced liver injury (ALI) research. Much of what has been learned to date involves inhibitors or nutritional manipulations that may not be specific. Knockout technology avoids these potential problems. Therefore, we used long-term intragastric cannulation in mice to study early ALI. Reactive oxygen species are involved in mechanisms of early ALI; however, their key source remains unclear. Cytochrome P-450 (CYP)2E1 is induced predominantly in hepatocytes by ethanol and could be one source of reactive oxygen species leading to liver injury. We aimed to determine if CYP2E1 was involved in ALI by adapting the enteral alcohol (EA) feeding model to CYP2E1 knockout (−/−) mice. Female CYP2E1 wild-type (+/+) or −/− mice were given a high-fat liquid diet with either ethanol or isocaloric maltose-dextrin as control continuously for 4 wk. All mice gained weight steadily over 4 wk, and there were no significant differences between groups. There were also no differences in ethanol elimination rates between CYP2E1 +/+ and −/− mice after acute ethanol administration to naive mice or mice receiving EA for 4 wk. However, EA stimulated rates 1.4-fold in both groups. EA elevated serum aspartate aminotransferase levels threefold to similar levels over control in both CYP2E1 +/+ and −/− mice. Liver histology was normal in control groups. In contrast, mice given ethanol developed mild steatosis, slight inflammation, and necrosis; however, there were no differences between the CYP2E1 +/+ and −/− groups. Chronic EA induced other CYP families (CYP3A, CYP2A12, CYP1A, and CYP2B) to the same extent in CYP2E1 +/+ and −/− mice. Furthermore, POBN radical adducts were also similar in both groups. Data presented here are consistent with the hypothesis that oxidants from CYP2E1 play only a small role in mechanisms of early ALI in mice. Moreover, this new mouse model illustrates the utility of knockout technology in ALI research.


Sign in / Sign up

Export Citation Format

Share Document