Quantitating Aortic Atherosclerosis in Rabbits and Mice

1997 ◽  
Vol 3 (S2) ◽  
pp. 317-318
Author(s):  
David A. Sanan ◽  
Dale L. Newland

Build-up of visible atherosclerotic plaque in the arteries is readily quantifiable. The mouse and the rabbit provide useful models for understanding the pathogenesis of atherosclerosis by investigating the effects of genetic and dietary perturbations.Although the wild type mouse does not develop atherosclerosis, atherosclerosis susceptibility genes have been identified in some laboratory mouse strains which do. Furthermore, transgenic technology and gene targeting have produced genetically modified mice that express various apolipoproteins, enzymes and cofactors involved in human lipoprotein metabolism. Gene “knockout” technology allows transgene expression without interference from homologous genes. One notable “knockout” mouse, deficient in apolipoprotein E, develops spontaneous atherosclerosis on a normal chow diet. Transgenic modulations of the atherosclerotic responses of these highly susceptible mice are more pronounced and easily measured. Small, cheap and fast breeding, mice are convenient animal models. But to make mice susceptible to atherosclerosis, their genetic background has to be so drastically altered that the resulting lipoprotein metabolism may not model the human metabolism accurately enough.

Author(s):  
L. Vacca-Galloway ◽  
Y.Q. Zhang ◽  
P. Bose ◽  
S.H. Zhang

The Wobbler mouse (wr) has been studied as a model for inherited human motoneuron diseases (MNDs). Using behavioral tests for forelimb power, walking, climbing, and the “clasp-like reflex” response, the progress of the MND can be categorized into early (Stage 1, age 21 days) and late (Stage 4, age 3 months) stages. Age-and sex-matched normal phenotype littermates (NFR/wr) were used as controls (Stage 0), as well as mice from two related wild-type mouse strains: NFR/N and a C57BI/6N. Using behavioral tests, we also detected pre-symptomatic Wobblers at postnatal ages 7 and 14 days. The mice were anesthetized and perfusion-fixed for immunocytochemical (ICC) of CGRP and ChAT in the spinal cord (C3 to C5).Using computerized morphomety (Vidas, Zeiss), the numbers of IR-CGRP labelled motoneurons were significantly lower in 14 day old Wobbler specimens compared with the controls (Fig. 1). The same trend was observed at 21 days (Stage 1) and 3 months (Stage 4). The IR-CGRP-containing motoneurons in the Wobbler specimens declined progressively with age.


Author(s):  
Tong Liu ◽  
Su Fu ◽  
Qian Wang ◽  
Hao Cheng ◽  
Dali Mu ◽  
...  

Abstract Background Induced browning adipocytes were assumed less viable and more prone to necrosis for their hypermetabolic property. Our previous study showed that browning of adipocytes was more evident in fat grafts with necrosis in humans. Objectives We aimed to estimate whether fat-transfer-induced browning biogenesis was associated with necrosis and its potential inflammation mechanisms in murine models. Methods Human subcutaneous adipose from thigh or abdomen of 5 patients via liposuction were injected in 100µl or 500µl (n=20 per group) into the dorsal flank of 6-8-week female nude mice fed with normal chow diet, and harvested after 2, 4, 8 and 12 weeks. Control groups did not receive any grafting procedures (sham operation), where lipoaspirates were analyzed immediately after harvest. Histology and electronic microscopy, immunological analyses of browning markers, necrosis marker, and type I/II macrophages markers in mice were performed. Results Histology and electronic microscopy showed browning adipocytes in in fat grafts with higher level of necrosis (0.435±0.017pg/ml for cleaved caspase-3, **p<0.01), IL-6(749.0±134.1pg/ml,***p<0.001) and infiltration of type 2 macrophage profiles in mice(2-fold increase, *p<0.05). Conclusions Browning of adipocytes induced by fat transfer in mice is in parallel with post-grafting necrotic levels, associated with elevated IL-6 and activated M2 macrophages profiles which promote browning development.


2021 ◽  
Vol 12 (3) ◽  
Author(s):  
Mi Tian ◽  
Jingjing Wang ◽  
Shangming Liu ◽  
Xinyun Li ◽  
Jingyuan Li ◽  
...  

AbstractThe liver plays an important role in lipid and glucose metabolism. Here, we show the role of human antigen R (HuR), an RNA regulator protein, in hepatocyte steatosis and glucose metabolism. We investigated the level of HuR in the liver of mice fed a normal chow diet (NCD) and a high-fat diet (HFD). HuR was downregulated in the livers of HFD-fed mice. Liver-specific HuR knockout (HuRLKO) mice showed exacerbated HFD-induced hepatic steatosis along with enhanced glucose tolerance as compared with control mice. Mechanistically, HuR could bind to the adenylate uridylate-rich elements of phosphatase and tensin homolog deleted on the chromosome 10 (PTEN) mRNA 3′ untranslated region, resulting in the increased stability of Pten mRNA; genetic knockdown of HuR decreased the expression of PTEN. Finally, lentiviral overexpression of PTEN alleviated the development of hepatic steatosis in HuRLKO mice in vivo. Overall, HuR regulates lipid and glucose metabolism by targeting PTEN.


2017 ◽  
Vol 16 (4) ◽  
pp. 1593-1604 ◽  
Author(s):  
Andreas Oberbach ◽  
Sven-Bastiaan Haange ◽  
Nadine Schlichting ◽  
Marco Heinrich ◽  
Stefanie Lehmann ◽  
...  

Endocrinology ◽  
2009 ◽  
Vol 150 (5) ◽  
pp. 2109-2117 ◽  
Author(s):  
Elodie Riant ◽  
Aurélie Waget ◽  
Haude Cogo ◽  
Jean-François Arnal ◽  
Rémy Burcelin ◽  
...  

Although corroborating data indicate that estrogens influence glucose metabolism through the activation of the estrogen receptor α (ERα), it has not been established whether this pathway could represent an effective therapeutic target to fight against metabolic disturbances induced by a high-fat diet (HFD). To this end, we first evaluated the influence of chronic 17β-estradiol (E2) administration in wild-type ovariectomized mice submitted to either a normal chow diet or a HFD. Whereas only a modest effect was observed in normal chow diet-fed mice, E2 administration exerted a protective effect against HFD-induced glucose intolerance, and this beneficial action was abolished in ERα-deficient mice. Furthermore, E2 treatment reduced HFD-induced insulin resistance by 50% during hyperinsulinemic euglycemic clamp studies and improved insulin signaling (Akt phosphorylation) in insulin-stimulated skeletal muscles. Unexpectedly, we found that E2 treatment enhanced cytokine (IL-6, TNF-α) and plasminogen activator inhibitor-1 mRNA expression induced by HFD in the liver and visceral adipose tissue. Interestingly, although the proinflammatory effect of E2 was abolished in visceral adipose tissue from chimeric mice grafted with bone marrow cells from ERα-deficient mice, the beneficial effect of the hormone on glucose tolerance was not altered, suggesting that the metabolic and inflammatory effects of estrogens can be dissociated. Eventually comparison of sham-operated with ovariectomized HFD-fed mice demonstrated that endogenous estrogens levels are sufficient to exert a full protective effect against insulin resistance and glucose intolerance. In conclusion, the regulation of the ERα pathway could represent an effective strategy to reduce the impact of high-fat diet-induced type 2 diabetes.


2021 ◽  
Vol 8 ◽  
Author(s):  
Antonia RuJia Sun ◽  
Xiaoxin Wu ◽  
Ross Crawford ◽  
Hongxing Li ◽  
Lin Mei ◽  
...  

Obesogenic diets contribute to the pathology of osteoarthritis (OA) by altering systemic and local metabolic inflammation. Yet, it remains unclear how quickly and reproducibly the body responds to weight loss strategies and improve OA. In this study we tested whether switching obese diet to a normal chow diet can mitigate the detrimental effects of inflammatory pathways that contribute to OA pathology. Male C57BL/6 mice were first fed with obesogenic diet (high fat diet) and switched to normal chow diet (obese diet → normal diet) or continued obese diet or normal diet throughout the experiment. A mouse model of OA was induced by surgical destabilization of the medial meniscus (DMM) model into the knee joint. Outcome measures included changes in metabolic factors such as glucose, insulin, lipid, and serum cytokines levels. Inflammation in synovial biopsies was scored and inflammation was determined using FACs sorted macrophages. Cartilage degeneration was monitored using histopathology. Our results indicate, dietary switching (obese diet → normal diet) reduced body weight and restored metabolic parameters and showed less synovial tissue inflammation. Systemic blood concentrations of pro-inflammatory cytokines IL-1α, IL-6, IL-12p40, and IL-17 were decreased, and anti-inflammatory cytokines IL-4 and IL-13 were increased in dietary switch group compared to mice that were fed with obesogenic diet continuously. Although obese diet worsens the cartilage degeneration in DMM OA model, weight loss induced by dietary switch does not promote the histopathological changes of OA during this study period. Collectively, these data demonstrate that switching obesogenic diet to normal improved metabolic syndrome symptoms and can modulate both systemic and synovium inflammation levels.


2021 ◽  
Author(s):  
Toyoyuki Takada ◽  
Kentaro Fukuta ◽  
Daiki Usuda ◽  
Tatsuya Kushida ◽  
Shinji Kondo ◽  
...  

AbstractLaboratory mouse strains have mosaic genomes derived from at least three major subspecies that are distributed in Eurasia. Here, we describe genomic variations in ten inbred strains: Mus musculus musculus-derived BLG2/Ms, NJL/Ms, CHD/Ms, SWN/Ms, and KJR/Ms; M. m. domesticus-derived PGN2/Ms and BFM/Ms; M. m. castaneus-derived HMI/Ms; and JF1/Ms and MSM/Ms, which were derived from a hybrid between M. m. musculus and M. m. castaneus. These strains were established by Prof. Moriwaki in the 1980s and are collectively named the “Mishima Battery”. These strains show large phenotypic variations in body size and in many physiological traits. We resequenced the genomes of the Mishima Battery strains and performed a comparative genomic analysis with dbSNP data. More than 81 million nucleotide coordinates were identified as variant sites due to the large genetic distances among the mouse subspecies; 8,062,070 new SNP sites were detected in this study, and these may underlie the large phenotypic diversity observed in the Mishima Battery. The new information was collected in a reconstructed genome database, termed MoG+ that includes new application software and viewers. MoG+ intuitively visualizes nucleotide variants in genes and intergenic regions, and amino acid substitutions across the three mouse subspecies. We report statistical data from the resequencing and comparative genomic analyses and newly collected phenotype data of the Mishima Battery, and provide a brief description of the functions of MoG+, which provides a searchable and unique data resource of the numerous genomic variations across the three mouse subspecies. The data in MoG+ will be invaluable for research into phenotype-genotype links in diverse mouse strains.


2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Christine Vrakas ◽  
Sheri E Keleman ◽  
Rosario Scalia ◽  
Michael V Autieri

Uncontrolled inflammation leads to many of the chronic diseases associated with obesity. Due to a lack of oxygen in the tissue, expanding adipose tissue becomes hypoxic and pro-inflammatory. Adipocytes release pro-angiogenic factors in an effort to restore blood flow to the tissue. Presently, little is known about the potential for endogenously expressed anti-inflammatory cytokines to attenuate inflammation and also provide pro-angiogenic effects. IL-19 is uniquely anti-inflammatory, pro-angiogenic and is both expressed by and targets various cells types. IL-19 expression in adipocytes and stromal vascular cells is increased in visceral compared to subcutaneous fat, and is also increased in visceral fat on high fat diet (HFD) compared to normal chow diet. There is no known mechanism to explain the role of IL-19 in adipose tissue expansion, and we hypothesized that IL-19 may have pro-angiogenic and anti-inflammatory properties in expanding adipose tissue. We have identified a gene regulatory factor, Interleukin Enhancer-Binding Factor 3 (ILF3) that is induced in adipocytes and stromal vascular cells by HFD and IL-19 treatment. We found that both IL-19 and VEGF induce ILF3 expression in cultured human endothelial cells (hECs). Proliferation is significantly reduced when ILF3 is knocked down using siRNA in hECs. Furthermore, when ILF3 is knocked down and hECs are stimulated with VEGF several angiogenic cytokines are also decreased. Through immunohistochemistry we found that ILF3 translocates from the nucleus to the cytoplasm in visceral fat of C57BL/6 mice fed a HFD, and remains in the nucleus when fed a normal chow diet. In summary IL-19 may be a unique HFD responsive adipokine functioning to reduce inflammation and increase angiogenesis in expanding adipose tissue. The angiogenic function of IL-19 may work through induction of the gene regulatory factor, ILF3.


2021 ◽  
Author(s):  
Xingjing Liu ◽  
Peng Sun ◽  
Qingzhao Yuan ◽  
Jinyang Xie ◽  
Ting Xiao ◽  
...  

Calcium/calmodulin-dependent serine protein kinase (CASK) is involved in the secretion of insulin vesicles in pancreatic β-cells. The present study revealed a new <i>in vivo </i>role of CASK in glucose homeostasis during the progression of type 2 diabetes mellitus (T2DM). A Cre-loxP system was used to specifically delete the <i>Cask </i>gene in mouse β-cells (βCASKKO), and the glucose metabolism was evaluated in <a>βCASKKO</a> mice fed a normal chow diet (ND) or a high-fat diet (HFD). ND-fed mice exhibited impaired insulin secretion in response to glucose stimulation. Transmission electron microscopy showed significantly reduced numbers of insulin granules at or near the cell membrane in the islets of βCASKKO mice. By contrast, HFD-fed βCASKKO mice showed reduced blood glucose and a partial relief of hyperinsulinemia and insulin resistance when compared to HFD-fed wildtype mice. The IRS1/PI3K/AKT signaling pathway was upregulated in the adipose tissue of HFD-βCASKKO mice. These results indicated that knockout of the <i>Cask</i> gene in β cells had a diverse effect on glucose homeostasis: reduced insulin secretion in ND-fed mice, but improves insulin sensitivity in HFD-fed mice. Therefore, CASK appears to function in the insulin secretion and contributes to hyperinsulinemia and insulin resistance during the development of obesity-related T2DM.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Johanna P. van Geffen ◽  
Frauke Swieringa ◽  
Kim van Kuijk ◽  
Bibian M. E. Tullemans ◽  
Fiorella A. Solari ◽  
...  

AbstractHyperlipidemia is a well-established risk factor for cardiovascular diseases. Millions of people worldwide display mildly elevated levels of plasma lipids and cholesterol linked to diet and life-style. While the prothrombotic risk of severe hyperlipidemia has been established, the effects of moderate hyperlipidemia are less clear. Here, we studied platelet activation and arterial thrombus formation in Apoe−/− and Ldlr−/− mice fed a normal chow diet, resulting in mildly increased plasma cholesterol. In blood from both knockout mice, collagen-dependent thrombus and fibrin formation under flow were enhanced. These effects did not increase in severe hyperlipidemic blood from aged mice and upon feeding a high-fat diet (Apoe−/− mice). Bone marrow from wild-type or Ldlr−/− mice was transplanted into irradiated Ldlr−/− recipients. Markedly, thrombus formation was enhanced in blood from chimeric mice, suggesting that the hyperlipidemic environment altered the wild-type platelets, rather than the genetic modification. The platelet proteome revealed high similarity between the three genotypes, without clear indication for a common protein-based gain-of-function. The platelet lipidome revealed an altered lipid profile in mildly hyperlipidemic mice. In conclusion, in Apoe−/− and Ldlr−/− mice, modest elevation in plasma and platelet cholesterol increased platelet responsiveness in thrombus formation and ensuing fibrin formation, resulting in a prothrombotic phenotype.


Sign in / Sign up

Export Citation Format

Share Document