scholarly journals Reaction Systems: A Formal Framework for Processes

Author(s):  
Grzegorz Rozenberg
2011 ◽  
Vol 22 (07) ◽  
pp. 1499-1517 ◽  
Author(s):  
ROBERT BRIJDER ◽  
ANDRZEJ EHRENFEUCHT ◽  
MICHAEL MAIN ◽  
GRZEGORZ ROZENBERG

Reaction systems are a formal framework for investigating processes carried out by biochemical reactions. This paper is an introduction to reaction systems. It provides basic notions together with the underlying intuition and motivation as well as two examples (a binary counter and transition systems) of "programming" with reaction systems. It also provides a tour of some research themes.


2014 ◽  
Vol 11 (99) ◽  
pp. 20130987 ◽  
Author(s):  
Harold Fellermann ◽  
Luca Cardelli

We present a formal calculus, termed the chemtainer calculus , able to capture the complexity of compartmentalized reaction systems such as populations of possibly nested vesicular compartments. Compartments contain molecular cargo as well as surface markers in the form of DNA single strands. These markers serve as compartment addresses and allow for their targeted transport and fusion, thereby enabling reactions of previously separated chemicals. The overall system organization allows for the set-up of programmable chemistry in microfluidic or other automated environments. We introduce a simple sequential programming language whose instructions are motivated by state-of-the-art microfluidic technology. Our approach integrates electronic control, chemical computing and material production in a unified formal framework that is able to mimic the integrated computational and constructive capabilities of the subcellular matrix. We provide a non-deterministic semantics of our programming language that enables us to analytically derive the computational and constructive power of our machinery. This semantics is used to derive the sets of all constructable chemicals and supermolecular structures that emerge from different underlying instruction sets. Because our proofs are constructive, they can be used to automatically infer control programs for the construction of target structures from a limited set of resource molecules. Finally, we present an example of our framework from the area of oligosaccharide synthesis.


1992 ◽  
Vol 12 (4) ◽  
pp. 443-456 ◽  
Author(s):  
Chunhong Xie ◽  
Taiping He ◽  
Guohong Bai
Keyword(s):  

Mathematics ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1074
Author(s):  
Vincent Wagner ◽  
Nicole Erika Radde

The Chemical Master Equation is a standard approach to model biochemical reaction networks. It consists of a system of linear differential equations, in which each state corresponds to a possible configuration of the reaction system, and the solution describes a time-dependent probability distribution over all configurations. The Stochastic Simulation Algorithm (SSA) is a method to simulate sample paths from this stochastic process. Both approaches are only applicable for small systems, characterized by few reactions and small numbers of molecules. For larger systems, the CME is computationally intractable due to a large number of possible configurations, and the SSA suffers from large reaction propensities. In our study, we focus on catalytic reaction systems, in which substrates are converted by catalytic molecules. We present an alternative description of these systems, called SiCaSMA, in which the full system is subdivided into smaller subsystems with one catalyst molecule each. These single catalyst subsystems can be analyzed individually, and their solutions are concatenated to give the solution of the full system. We show the validity of our approach by applying it to two test-bed reaction systems, a reversible switch of a molecule and methyltransferase-mediated DNA methylation.


Studia Logica ◽  
2021 ◽  
Author(s):  
Vincenzo Crupi ◽  
Andrea Iacona

AbstractThis paper develops a probabilistic analysis of conditionals which hinges on a quantitative measure of evidential support. In order to spell out the interpretation of ‘if’ suggested, we will compare it with two more familiar interpretations, the suppositional interpretation and the strict interpretation, within a formal framework which rests on fairly uncontroversial assumptions. As it will emerge, each of the three interpretations considered exhibits specific logical features that deserve separate consideration.


The Analyst ◽  
2020 ◽  
Author(s):  
Zhengrong Niu ◽  
Hong-Hong Rao ◽  
Xin Xue ◽  
Mingyue Luo ◽  
Xiuhui Liu ◽  
...  

Fenton-like reaction systems have been proven to be more efficient as the powerful promoters in advanced oxidation processes (AOPs) due to their resultantly generated reactive oxygen species (ROS) such as...


Sign in / Sign up

Export Citation Format

Share Document