scholarly journals Headland Turning Control Method Simulation of Autonomous Agricultural Machine Based on Improved Pure Pursuit Model

Author(s):  
Peichen Huang ◽  
Xiwen Luo ◽  
Zhigang Zhang
2011 ◽  
Vol 2-3 ◽  
pp. 48-52 ◽  
Author(s):  
Soichiro Suzuki ◽  
Ying Cao ◽  
Masamichi Takada ◽  
Kentaro Oi

This study is aimed at stabilizing a three dimensional biped passive walker in various environments and achieving climbing and turning control. The novel control method synchronizes a period of the changing motion of the stance leg in frontal plane (frontal motion) with a period of the swing leg by periodic input in order to stabilize the three dimensional passive walker. A mechanical oscillator is utilized to change the period of the frontal motion. The target path of the oscillator is automatically generated based on frequency entrainment in order to adjust the period of the frontal motion. In the climbing and turning control of the passive walker, the amplitude and the phase generating algorithm of the target path of the oscillator are improved. It is analytically demonstrated that the biped passive walker can be stabilized even in climbing and turning.


Author(s):  
Hitoshi SORI ◽  
Hiroyuki INOUE ◽  
Kazunori HOSOTANI ◽  
Manabu KATO ◽  
Shiro URUSHIHARA ◽  
...  

2014 ◽  
Vol 602-605 ◽  
pp. 1186-1189
Author(s):  
Dong Sheng Wu ◽  
Qing Yang

Aiming at the phenomena of big time delay are normally existing in industry control, this paper proposes an intelligent GA-Smith-PID control method based on genetic algorithm and Smith predictive compensation algorithm and traditional PID controller. This method uses the ability of on line-study, a self-turning control strategy of GA, and better control of Smith predictive compensation to deal with the big time delay. This method overcomes the limitation of traditional PID control effectively, and improves the system’s robustness and self-adaptability, and gets satisfactory control to deal with the big time delay system.


2020 ◽  
Vol 32 (3) ◽  
pp. 561-570
Author(s):  
Yutaka Hamaguchi ◽  
Pongsathorn Raksincharoensak ◽  
◽  

With the increase in the demand for road freight transportation, semi-trailers are being increasingly preferedowing to their large maximum load capacity. However, for such vehicles, excellent driving skills are required because unique steering is often necessary during reverse parking. In this paper, the concept of a parking assist system and path tracking controller is proposed. The control system consists of a pure pursuit motion planner for handling the reference path tracking and a feedback controller for stabilizing the hitch angles. We propose a control method to realize the ideal control performance of an actual vehicle subjected to unmeasured disturbance. An actual full-scale vehicle experiment is conducted and the effectiveness of the proposed approach is verified by evaluating the error from the target parking position.


2021 ◽  
Vol 104 (4) ◽  
pp. 003685042110537
Author(s):  
Cheng Shen ◽  
Suming Liang ◽  
Jinhao Liang ◽  
Guodong Yin

Agricultural machine automatic navigation poses great challenge to the precise agricultural technology system nowadays. To this end, this paper proposes a novel steering assistance system (SAS) to assist drivers in the path-tracking. First, the driver steering model is investigated through the driver simulator tests. Combining the wheeled tractor kinematics model, a driver-vehicle model is developed. Then, a polytopic linear parameter-varying (LPV) system is adopted to describe the uncertainties, including time-varying driver model parameters and velocity, in the model, based on which an output-feedback robust controller is developed to ensure robust stability within the polytope space. Moreover, a regional pole placement method is adopted to improve the transient performance of the system. Finally, driver-in-the-loop and field tests conducted to value the controller. The results show the effectiveness of the proposed method to improve the path-tracking performance for the agricultural machine navigation, while reducing the physical and mental workload of drivers. This control method is expected to be a paradigm for the precise navigation system of the agricultural machinery.


2001 ◽  
Vol 84 (9) ◽  
pp. 16-26
Author(s):  
Tadao Saito ◽  
Hitoshi Aida ◽  
Terumasa Aoki ◽  
Soichiro Hidaka ◽  
Tredej Toranawigtrai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document