scholarly journals Climbing and Turning Control of a Biped Passive Walker by Periodic Input Based on Frequency Entrainment

2011 ◽  
Vol 2-3 ◽  
pp. 48-52 ◽  
Author(s):  
Soichiro Suzuki ◽  
Ying Cao ◽  
Masamichi Takada ◽  
Kentaro Oi

This study is aimed at stabilizing a three dimensional biped passive walker in various environments and achieving climbing and turning control. The novel control method synchronizes a period of the changing motion of the stance leg in frontal plane (frontal motion) with a period of the swing leg by periodic input in order to stabilize the three dimensional passive walker. A mechanical oscillator is utilized to change the period of the frontal motion. The target path of the oscillator is automatically generated based on frequency entrainment in order to adjust the period of the frontal motion. In the climbing and turning control of the passive walker, the amplitude and the phase generating algorithm of the target path of the oscillator are improved. It is analytically demonstrated that the biped passive walker can be stabilized even in climbing and turning.

2011 ◽  
Vol 23 (6) ◽  
pp. 1100-1107 ◽  
Author(s):  
Soichiro Suzuki ◽  
◽  
Masamichi Takada ◽  
Yuta Iwakura ◽  

This study proposes a new control that stabilizes a three-dimensional (3D) passive walker without torque input at knees and ankles joints by using entrainment and a mechanical oscillator. It is difficult to stabilize a 3D biped passive walker in different environments because the range of initial conditions for stable walking is limited, so we designed a 3D biped passive walker as a passive walking platform by considering the results of human gait analysis to make the success of passive walking high. The stability of this platform was analytically determined by analyzing the frontal movement limit cycle. In the new control, the frontalmovement period is synchronized with the swing-leg period by a mechanical oscillator on the top of the walker. The mechanical oscillator controller generates a target path to synchronize oscillatormovement with swing-leg movement using frequency entrainment. The walker is stabilized when the frontal movement period was synchronized with the swing-leg period by periodic input generated by the mechanical oscillator. It was experimentally found consequently that the walker was stabilized on different slopes and flat floors.


2014 ◽  
Vol 247 ◽  
pp. 487-493 ◽  
Author(s):  
Shao-Fu Wang ◽  
Xiao-Cong Li ◽  
Fei Xia ◽  
Zhan-Shan Xie

Circuit World ◽  
2019 ◽  
Vol 45 (2) ◽  
pp. 93-106
Author(s):  
Li Xiong ◽  
Wanjun Yin ◽  
Xinguo Zhang

Purpose This paper is aimed at investigating a novel chemical oscillating chaotic system with different attractors at fixed parameters. The typical dynamical behavior of the new chemical oscillating system is discussed, and it is found that the state selection is dependent on initial values. Then, the stabilization problem of the chemical oscillating attractors is investigated analytically and numerically. Subsequently, the novel electronic circuit of the proposed chemical oscillating chaotic system are constructed, and the influences of the changes of circuit parameters on chemical oscillating chaotic attractors are investigated. Design/methodology/approach The different attractors of the novel chemical oscillating chaotic system are investigated by changing the initial values under fixed parameters. Moreover, the active control and adaptive control methods are presented to make the chemical oscillating chaotic systems asymptotically stable at the origin based on the Lyapunov stability theory. The influences on chemical oscillating chaotic attractors are also verified by changing the circuit parameters. Findings It is found that the active control method is easier to be realized by using physical components because of its less control signal and lower cost. It is also confirmed that the adaptive control method enjoys strong anti-interference ability because of its large number of selected controllers. What can be seen from the simulation results is that the chaotic circuits are extremely dependent on circuit parameters selection. Comparisons between MATLAB simulations and Multisim simulation results show that they are consistent with each other and demonstrate that changing attractors of the chemical oscillating chaotic system exist. It is conformed that circuit parameters selection can be effective to control and realize chaotic circuits. Originality/value The different attractors of the novel chemical oscillating chaotic system are investigated by changing the initial values under fixed parameters. The characteristic of the chemical oscillating attractor is that the basin of attraction of the three-dimensional attractor is located in the first quadrant of the eight quadrants of the three-dimensional space, and the ranges of the three variables are positive. This is because the concentrations of the three chemical substances are all positive.


2014 ◽  
Vol 757 ◽  
pp. 908-942 ◽  
Author(s):  
K. Matsuura ◽  
M. Nakano

AbstractThis study investigates the suppression of the sound produced when a jet, issued from a circular nozzle or hole in a plate, goes through a similar hole in a second plate. The sound, known as a hole tone, is encountered in many practical engineering situations. The mean velocity of the air jet $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}u_0$ was $6\text {--}12\ \mathrm{m}\ {\mathrm{s}}^{-1}$. The nozzle and the end plate hole both had a diameter of 51 mm, and the impingement length $L_{im}$ between the nozzle and the end plate was 50–90 mm. We propose a novel passive control method of suppressing the tone with an axisymmetric obstacle on the end plate. We find that the effect of the obstacle is well described by the combination ($W/L_{im}$, $h$) where $W$ is the distance from the edge of the end plate hole to the inner wall of the obstacle, and $h$ is the obstacle height. The tone is suppressed when backflows from the obstacle affect the jet shear layers near the nozzle exit. We do a direct sound computation for a typical case where the tone is successfully suppressed. Axisymmetric uniformity observed in the uncontrolled case is broken almost completely in the controlled case. The destruction is maintained by the process in which three-dimensional vortices in the jet shear layers convect downstream, interact with the obstacle and recursively disturb the jet flow from the nozzle exit. While regions near the edge of the end plate hole are responsible for producing the sound in the controlled case as well as in the uncontrolled case, acoustic power in the controlled case is much lower than in the uncontrolled case because of the disorganized state.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Rodolfo Panerai ◽  
Antonio Pittelli ◽  
Konstantina Polydorou

Abstract We find a one-dimensional protected subsector of $$ \mathcal{N} $$ N = 4 matter theories on a general class of three-dimensional manifolds. By means of equivariant localization we identify a dual quantum mechanics computing BPS correlators of the original model in three dimensions. Specifically, applying the Atiyah-Bott-Berline-Vergne formula to the original action demonstrates that this localizes on a one-dimensional action with support on the fixed-point submanifold of suitable isometries. We first show that our approach reproduces previous results obtained on S3. Then, we apply it to the novel case of S2× S1 and show that the theory localizes on two noninteracting quantum mechanics with disjoint support. We prove that the BPS operators of such models are naturally associated with a noncom- mutative star product, while their correlation functions are essentially topological. Finally, we couple the three-dimensional theory to general $$ \mathcal{N} $$ N = (2, 2) surface defects and extend the localization computation to capture the full partition function and BPS correlators of the mixed-dimensional system.


Author(s):  
H Geramizadeh ◽  
S Dariushi ◽  
S Jedari Salami

The current study focuses on designing the optimal three-dimensional printed sandwich structures. The main goal is to improve the energy absorption capacity of the out-of-plane honeycomb sandwich beam. The novel Beta VI and Alpha VI were designed in order to achieve this aim. In the Beta VI, the connecting curves (splines) were used instead of the four diagonal walls, while the two vertical walls remained unchanged. The Alpha VI is a step forward on the Beta VI, which was promoted by filleting all angles among the vertical walls, created arcs, and face sheets. The two offered sandwich structures have not hitherto been provided in the literature. All models were designed and simulated by the CATIA and ABAQUS, respectively. The three-dimensional printer fabricated the samples by fused deposition modeling technique. The material properties were determined under tensile, compression, and three-point bending tests. The results are carried out by two methods based on experimental tests and finite element analyses that confirmed each other. The achievements provide novel insights into the determination of the adequate number of unit cells and demonstrate the energy absorption capacity of the Beta VI and Alpha VI are 23.7% and 53.9%, respectively, higher than the out-of-plane honeycomb sandwich structures.


Inorganics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 25
Author(s):  
Kristen A. Pace ◽  
Vladislav V. Klepov ◽  
Mark D. Smith ◽  
Travis Williams ◽  
Gregory Morrison ◽  
...  

The relevance of multidimensional and porous crystalline materials to nuclear waste remediation and storage applications has motivated exploratory research focused on materials discovery of compounds, such as actinide mixed-oxoanion phases, which exhibit rich structural chemistry. The novel phase K1.8Na1.2[(UO2)BSi4O12] has been synthesized using hydrothermal methods, representing the first example of a uranyl borosilicate. The three-dimensional structure crystallizes in the orthorhombic space group Cmce with lattice parameters a = 15.5471(19) Å, b = 14.3403(17) Å, c = 11.7315(15) Å, and V = 2615.5(6) Å3, and is composed of UO6 octahedra linked by [BSi4O12]5− chains to form a [(UO2)BSi4O12]3− framework. The synthesis method, structure, results of Raman, IR, and X-ray absorption spectroscopy, and thermal stability are discussed.


Author(s):  
Dominic Gascho ◽  
Michael J. Thali ◽  
Rosa M. Martinez ◽  
Stephan A. Bolliger

AbstractThe computed tomography (CT) scan of a 19-year-old man who died from an occipito-frontal gunshot wound presented an impressive radiating fracture line where the entire sagittal suture burst due to the high intracranial pressure that arose from a near-contact shot from a 9 mm bullet fired from a Glock 17 pistol. Photorealistic depictions of the radiating fracture lines along the cranial bones were created using three-dimensional reconstruction methods, such as the novel cinematic rendering technique that simulates the propagation and interaction of light when it passes through volumetric data. Since the brain had collapsed, depiction of soft tissue was insufficient on CT images. An additional magnetic resonance imaging (MRI) examination was performed, which enabled the diagnostic assessment of cerebral injuries.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2273
Author(s):  
Wan-Ying Huang ◽  
Norichika Hashimoto ◽  
Ryuhei Kitai ◽  
Shin-ichiro Suye ◽  
Satoshi Fujita

The occasional malignant transformation of intracranial epidermoid cysts into squamous cell carcinomas remains poorly understood; the development of an in vitro cyst model is urgently needed. For this purpose, we designed a hollow nanofiber sphere, the “nanofiber-mâché ball.” This hollow structure was fabricated by electrospinning nanofiber onto alginate hydrogel beads followed by dissolving the beads. A ball with approximately 230 mm3 inner volume provided a fibrous geometry mimicking the topography of the extracellular matrix. Two ducts located on opposite sides provided a route to exchange nutrients and waste. This resulted in a concentration gradient that induced oriented migration, in which seeded cells adhered randomly to the inner surface, formed a highly oriented structure, and then secreted a dense web of collagen fibrils. Circumferentially aligned fibers on the internal interface between the duct and hollow ball inhibited cells from migrating out of the interior, similar to a fish bottle trap. This structure helped to form an adepithelial layer on the inner surface. The novel nanofiber-mâché technique, using a millimeter-sized hollow fibrous scaffold, is excellently suited to investigating cyst physiology.


Author(s):  
Qiangqiang Huang ◽  
Xinqian Zheng ◽  
Aolin Wang

Air often flows into compressors with inlet prewhirl, because it will obtain a circumferential component of velocity via inlet distortion or swirl generators such as inlet guide vanes. A lot of research has shown that inlet prewhirl does influence the characteristics of components, but the change of the matching relation between the components caused by inlet prewhirl is still unclear. This paper investigates the influence of inlet prewhirl on the matching of the impeller and the diffuser and proposes a flow control method to cure mismatching. The approach combines steady three-dimensional Reynolds-averaged Navier-Stokes (RANS) simulations with theoretical analysis and modeling. The result shows that a compressor whose impeller and diffuser match well at zero prewhirl will go to mismatching at non-zero prewhirl. The diffuser throat gets too large to match the impeller at positive prewhirl and gets too small for matching at negative prewhirl. The choking mass flow of the impeller is more sensitive to inlet prewhirl than that of the diffuser, which is the main reason for the mismatching. To cure the mismatching via adjusting the diffuser vanes stagger angle, a one-dimensional method based on incidence matching has been proposed to yield a control schedule for adjusting the diffuser. The optimal stagger angle predicted by analytical method has good agreement with that predicted by computational fluid dynamics (CFD). The compressor is able to operate efficiently in a much broader flow range with the control schedule. The flow range, where the efficiency is above 80%, of the datum compressor and the compressor only employing inlet prewhirl and no control are just 25.3% and 31.8%, respectively. For the compressor following the control schedule, the flow range is improved up to 46.5%. This paper also provides the perspective of components matching to think about inlet distortion.


Sign in / Sign up

Export Citation Format

Share Document