Improvement of the Illumination Levels Combined with Energy Savings for a Residential Building

2011 ◽  
pp. 463-479
Author(s):  
Sabah A. Abdul-Wahab ◽  
Syed Uzair Ahmed
Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3876
Author(s):  
Sameh Monna ◽  
Adel Juaidi ◽  
Ramez Abdallah ◽  
Aiman Albatayneh ◽  
Patrick Dutournie ◽  
...  

Since buildings are one of the major contributors to global warming, efforts should be intensified to make them more energy-efficient, particularly existing buildings. This research intends to analyze the energy savings from a suggested retrofitting program using energy simulation for typical existing residential buildings. For the assessment of the energy retrofitting program using computer simulation, the most commonly utilized residential building types were selected. The energy consumption of those selected residential buildings was assessed, and a baseline for evaluating energy retrofitting was established. Three levels of retrofitting programs were implemented. These levels were ordered by cost, with the first level being the least costly and the third level is the most expensive. The simulation models were created for two different types of buildings in three different climatic zones in Palestine. The findings suggest that water heating, space heating, space cooling, and electric lighting are the highest energy consumers in ordinary houses. Level one measures resulted in a 19–24 percent decrease in energy consumption due to reduced heating and cooling loads. The use of a combination of levels one and two resulted in a decrease of energy consumption for heating, cooling, and lighting by 50–57%. The use of the three levels resulted in a decrease of 71–80% in total energy usage for heating, cooling, lighting, water heating, and air conditioning.


Author(s):  
Jerzy Sowa ◽  
Maciej Mijakowski

A humidity-sensitive demand-controlled ventilation system is known for many years. It has been developed and commonly applied in regions with an oceanic climate. Some attempts were made to introduce this solution in Poland in a much severe continental climate. The article evaluates this system's performance and energy consumption applied in an 8-floor multi-unit residential building, virtual reference building described by the National Energy Conservation Agency NAPE, Poland. The simulations using the computer program CONTAM were performed for the whole hating season for Warsaw's climate. Besides passive stack ventilation that worked as a reference, two versions of humidity-sensitive demand-controlled ventilation were checked. The difference between them lies in applying the additional roof fans that convert the system to hybrid. The study confirmed that the application of demand-controlled ventilation in multi-unit residential buildings in a continental climate with warm summer (Dfb) leads to significant energy savings. However, the efforts to ensure acceptable indoor air quality require hybrid ventilation, which reduces the energy benefits. It is especially visible when primary energy use is analyzed.


Buildings ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 206
Author(s):  
Zixuan Chen ◽  
Ahmed W. A. Hammad ◽  
Imriyas Kamardeen ◽  
Assed Haddad

Windows account for a significant proportion of the total energy lost in buildings. The interaction of window type, Window-to-Wall Ratio (WWR) scheduled and window placement height influence natural lighting and heat transfer through windows. This is a pressing issue for nontropical regions considering their high emissions and distinct climatic characteristics. A limitation exists in the adoption of common simulation-based optimisation approaches in the literature, which are hardly accessible to practitioners. This article develops a numerical-based window design optimisation model using a common Building Information Modelling (BIM) platform adopted throughout the industry, focusing on nontropical regions of Australia. Three objective functions are proposed; the first objective is to maximise the available daylight, and the other two emphasize undesirable heat transfer through windows in summer and winter. The developed model is tested on a case study located in Sydney, Australia, and a set of Pareto-optimum solutions is obtained. Through the use of the proposed model, energy savings of up to 8.57% are achieved.


Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3038 ◽  
Author(s):  
José Sánchez Ramos ◽  
MCarmen Guerrero Delgado ◽  
Servando Álvarez Domínguez ◽  
José Luis Molina Félix ◽  
Francisco José Sánchez de la Flor ◽  
...  

The reduction of energy consumption in the residential sector presents substantial potential through the implementation of energy efficiency improvement measures. Current trends involve the use of simulation tools which obtain the buildings’ energy performance to support the development of possible solutions to help reduce energy consumption. However, simulation tools demand considerable amounts of data regarding the buildings’ geometry, construction, and frequency of use. Additionally, the measured values tend to be different from the estimated values obtained with the use of energy simulation programs, an issue known as the ‘performance gap’. The proposed methodology provides a solution for both of the aforementioned problems, since the amount of data needed is considerably reduced and the results are calibrated using measured values. This new approach allows to find an optimal retrofitting project by life cycle energy assessment, in terms of cost and energy savings, for individual buildings as well as several blocks of buildings. Furthermore, the potential for implementation of the methodology is proven by obtaining a comprehensive energy rehabilitation plan for a residential building. The developed methodology provides highly accurate estimates of energy savings, directly linked to the buildings’ real energy needs, reducing the difference between the consumption measured and the predictions.


2014 ◽  
Vol 8 (4) ◽  
pp. 477-491 ◽  
Author(s):  
Patrick X.W. Zou ◽  
Rebecca J. Yang

Purpose – This paper aims to investigate residential occupants’ motivations and behaviour on energy savings. Energy consumption in residential buildings is a major contributor to greenhouse gas emissions. Design/methodology/approach – By using an online survey questionnaire instrument, this research collected 504 sets of responses from households in the state of New South Wales, Australia. Findings – Through statistical analysis of the data collected, this research found that construction cost and government incentive were considered as the major influencing factors on achieving energy-efficient residential building development, and the lower bills resulted from the reduced energy and water consumption were considered as the most important benefits. The research also found that many households exhibited a high level of awareness and had implemented some sustainability improvement measures. It is suggested, based on these research findings, that governments should articulate, by means of education, the rationale and benefits of sustainable home development that are identified in this research and reduce material costs and increase government incentives. Originality/value – A framework on improving residential sustainability was proposed in this paper. Stakeholders in the sustainable home supply chain could use this framework as a reference to pave the way for energy efficient home development from their perspective


Energy ◽  
2017 ◽  
Vol 135 ◽  
pp. 563-576 ◽  
Author(s):  
Ambrose Dodoo ◽  
Leif Gustavsson ◽  
Uniben Y.A. Tettey

Author(s):  
Zixuan Chen ◽  
Ahmed W A Hammad ◽  
Imriyas Kamardeen ◽  
Assed Haddad

Windows account for a significant proportion of the total energy lost in buildings. The interaction of window type, Window-to-Wall Ratio (WWR) scheduled and window placement height would influence the natural lighting and heat transfer through windows. This is a pressing issue for non-tropical regions considering their high emissions and distinct climatic characteristics. A limitation exists in the adoption of common simulation-based optimisation approaches in the literature, which are hardly accessible to practitioners. This article develops a numerical-based window design optimisation model using a common Building Information Modelling (BIM) platform adopted throughout the industry, focusing on non-tropical regions of Australia. Three objective functions are proposed; the first objective is to maximize the available daylight, and the other two emphasize on the undesirable heat transfer through windows in summer and winter respectively. The developed model is tested on a case study located in Sydney, Australia, and a set of Pareto-optimum solutions is obtained. Through the use of the proposed model, energy savings of up to 16.43% are achieved. Key findings on the case example indicate that leveraging winter heat gain to reduce annual energy consumption should not be the top priority when designing windows for Sydney.


Author(s):  
Hua Chen ◽  
Qianqian Di

To improve the applicability of water-cooled air-conditioners in the domestic sector, the development of a prediction model for energy performance analysis is needed. This paper addressed the development of an empirical model for predicting the operation performance and the annual energy consumption for the use of water-cooled air-conditioners. An experimental prototype was set up and tested in an environmental chamber in validating the empirical model. The predictions compared well with the experimental results. Furthermore, a high-rise residential building whole-year energy consumption simulation on applications of water-cooled air conditioners in South china was also analyzed. The results show 20.4% energy savings over air-cooled units while the increase in water-side consumption is 31.1%. The overall energy savings were estimated at 16.2% when including the additional water costs.


Sign in / Sign up

Export Citation Format

Share Document