Energy savings and overheating risk of deep energy renovation of a multi-storey residential building in a cold climate under climate change

Energy ◽  
2020 ◽  
Vol 202 ◽  
pp. 117578 ◽  
Author(s):  
Uniben Yao Ayikoe Tettey ◽  
Leif Gustavsson
2016 ◽  
Vol 7 (2) ◽  
pp. 68-74
Author(s):  
Nurshafina Sharkawi ◽  
Azhaili Baharun

In recent years, Malaysia has experienced climate change that leads to the higher consumption of energy dueto the increasing outdoor temperature that affects indoor discomfort conditions. Paints were found to be the insulationmaterial that is increasingly important because of their benefits in terms of thermal comfort and energy savings. Therefore,the aim of this study is to determine the effect of different types of paint to the residential building. Two types of paints wereapplied on indoor walls of identical room and their performance was compared. The equipment used to measure theperformance includes data logger and thermocouple for temperature performance and lux meter for illuminationperformance. The experiments consider the impacts of paints on interior surface temperature, wall orientation, indoor airtemperature and the illuminance level. The result shows that the air temperature of the room was brought down considerablyat about 1.9°C by implementing the reflecting paint on the indoor walls. The most significant effect is on the surfacetemperature with the highest temperature reduction of about 2.8°C which occurs at west wall after the application ofreflective paint that makes it as the best location to use reflective paint. For illumination, the results show that reflective paintgives significant effect compare to energy saving paint with the highest illuminance level of 392 lux. With the application ofreflective paint, the indoor temperature is improved and thus minimized the energy usage. Reflective paint has also presentedthe ability to reduce the indoor temperature, the effective wall orientation when applying it and improves the illuminancelevel of indoor building.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3486
Author(s):  
Andrés Soto ◽  
Pedro Martínez ◽  
Victor M. Soto ◽  
Pedro J. Martínez

Natural ventilation, combined with a passive cooling system, can provide significant energy savings in the refrigeration of indoor spaces. The performance of these systems is highly dependent on outdoor climatic conditions. The objective of this study was to analyse the feasibility of a passive, downdraught, evaporative cooling system driven by solar chimneys in different climatic zones by using an experimentally validated simulation tool. This tool combined a ventilation model and a thermal model of the dwelling in which an empirical model of a direct evaporative system made of plastic mesh was implemented. For experimental validation of the combined model, sensors were installed in the dwelling and calibrated in the laboratory. The combined model was applied to Spanish and European cities with different climates. In the simulation, values of cooling energy per volume of air ranging between 0.53 Wh/m3 and 0.79 Wh/m3 were obtained for Alicante (hot climate with moderate humidity) and Madrid (hot and dry climate), respectively. In these locations, medium and high applicability was obtained, respectively, in comparison with Burgos (cold climate with moderate humidity) and Bilbao (cold and humid climate), which were low. The evaluation of the reference building in each location allowed establishing a classification in terms of performance, comfort and applicability for each climate.


2010 ◽  
pp. 115-132 ◽  
Author(s):  
S. Agibalov ◽  
A. Kokorin

Copenhagen summit results could be called a failure. This is the failure of UN climate change policy management, but definitely the first step to a new order as well. The article reviews main characteristics of climate policy paradigm shifts. Russian interests in climate change policy and main threats are analyzed. Successful development and implementation of energy savings and energy efficiency policy are necessary and would sufficiently help solving the global climate change problem.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3876
Author(s):  
Sameh Monna ◽  
Adel Juaidi ◽  
Ramez Abdallah ◽  
Aiman Albatayneh ◽  
Patrick Dutournie ◽  
...  

Since buildings are one of the major contributors to global warming, efforts should be intensified to make them more energy-efficient, particularly existing buildings. This research intends to analyze the energy savings from a suggested retrofitting program using energy simulation for typical existing residential buildings. For the assessment of the energy retrofitting program using computer simulation, the most commonly utilized residential building types were selected. The energy consumption of those selected residential buildings was assessed, and a baseline for evaluating energy retrofitting was established. Three levels of retrofitting programs were implemented. These levels were ordered by cost, with the first level being the least costly and the third level is the most expensive. The simulation models were created for two different types of buildings in three different climatic zones in Palestine. The findings suggest that water heating, space heating, space cooling, and electric lighting are the highest energy consumers in ordinary houses. Level one measures resulted in a 19–24 percent decrease in energy consumption due to reduced heating and cooling loads. The use of a combination of levels one and two resulted in a decrease of energy consumption for heating, cooling, and lighting by 50–57%. The use of the three levels resulted in a decrease of 71–80% in total energy usage for heating, cooling, lighting, water heating, and air conditioning.


Buildings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 333
Author(s):  
Lin Wang ◽  
Maurice Defo ◽  
Zhe Xiao ◽  
Hua Ge ◽  
Michael A. Lacasse

Previous studies have shown that the effects of climate change on building structures will increase the mould growth risk of the wood-frame building envelope in many circumstances. This risk can be controlled by wind-driven rain deflection, improving water tightness of the exterior facade, and improving cladding ventilation. However, the effectiveness of these risk mitigation strategies are subject to various uncertainties, such as the uncertainties of wall component properties and micro-climatic conditions. The objective of this paper is to apply stochastic hygrothermal simulation to evaluate the mould growth risk of a brick veneer-clad wood-frame wall with a drainage cavity under historical and future climatic conditions of Ottawa, a Canadian city located in a cold climate zone. An extensive literature review was conducted to quantify the range of stochastic variables including rain deposition factor, rain leakage moisture source, cladding ventilation rate and material properties of brick. The randomised Sobol sequence-based sampling method, one of the Randomized Quasi-Monte Carlo (RQMC) methods, was applied for risk assessment and error estimation. It was found that, under the climatic condition of Ottawa, limiting the amount of wind-driven rain to which walls are subjected is a more robust mitigation measure than improving cladding ventilation in controlling mould growth risk, the improving of water tightness of exterior façade is not as robust as wind-driven rain deflection and cladding ventilation, however, the reduction of rainwater penetration can reduce the mould growth risk at different levels of rain deposition factor and cladding ventilation rate.


2018 ◽  
Vol 63 (1) ◽  
pp. 57-66
Author(s):  
Balázs Bokor ◽  
Hacer Akhan ◽  
Dogan Eryener ◽  
László Kajtár

Transpired solar collector (TSC) systems are simple solutions for the preheating of ventilation air with solar energy. Their performance is a function of several environmental factors, so the climatic conditions of the location play an important role. In this paper, the effect of different climatic zones on the thermal performance of the TSC is investigated. To exclude other sources of influence, the same reference industrial building is examined in four Turkish locations (Antalya, Istanbul, Ankara and Sivas) representing different climatic conditions. RETScreen simulation is carried out for all four regions to obtain the drop of conventional heating requirement in case absorber azimuth of 0°, 45° and 90°. To illustrate the performance, temperature rise, heating energy savings and annual solar fraction are presented. Generally, it can be stated that a location with cold climate and high solar radiation at the same time benefits most from the use of a TSC system. A mathematical correlation has been found showing the solar fraction's dependence on solar radiation and heating degree days. Finally, simulation results have been compared to a set of measurement data from an industrial building's TSC system near Istanbul.


Author(s):  
Jerzy Sowa ◽  
Maciej Mijakowski

A humidity-sensitive demand-controlled ventilation system is known for many years. It has been developed and commonly applied in regions with an oceanic climate. Some attempts were made to introduce this solution in Poland in a much severe continental climate. The article evaluates this system's performance and energy consumption applied in an 8-floor multi-unit residential building, virtual reference building described by the National Energy Conservation Agency NAPE, Poland. The simulations using the computer program CONTAM were performed for the whole hating season for Warsaw's climate. Besides passive stack ventilation that worked as a reference, two versions of humidity-sensitive demand-controlled ventilation were checked. The difference between them lies in applying the additional roof fans that convert the system to hybrid. The study confirmed that the application of demand-controlled ventilation in multi-unit residential buildings in a continental climate with warm summer (Dfb) leads to significant energy savings. However, the efforts to ensure acceptable indoor air quality require hybrid ventilation, which reduces the energy benefits. It is especially visible when primary energy use is analyzed.


Sign in / Sign up

Export Citation Format

Share Document