scholarly journals Discovery and Characterization of Chromatin States for Systematic Annotation of the Human Genome

Author(s):  
Jason Ernst ◽  
Manolis Kellis
2021 ◽  
Vol 22 (9) ◽  
pp. 4707
Author(s):  
Mariana Lopes ◽  
Sandra Louzada ◽  
Margarida Gama-Carvalho ◽  
Raquel Chaves

(Peri)centromeric repetitive sequences and, more specifically, satellite DNA (satDNA) sequences, constitute a major human genomic component. SatDNA sequences can vary on a large number of features, including nucleotide composition, complexity, and abundance. Several satDNA families have been identified and characterized in the human genome through time, albeit at different speeds. Human satDNA families present a high degree of sub-variability, leading to the definition of various subfamilies with different organization and clustered localization. Evolution of satDNA analysis has enabled the progressive characterization of satDNA features. Despite recent advances in the sequencing of centromeric arrays, comprehensive genomic studies to assess their variability are still required to provide accurate and proportional representation of satDNA (peri)centromeric/acrocentric short arm sequences. Approaches combining multiple techniques have been successfully applied and seem to be the path to follow for generating integrated knowledge in the promising field of human satDNA biology.


PLoS Genetics ◽  
2005 ◽  
Vol preprint (2007) ◽  
pp. e136
Author(s):  
Hualin Xi ◽  
Hennady P Shulha ◽  
Jane M Lin ◽  
Teresa R Vales ◽  
Yutao Fu ◽  
...  

Gene ◽  
2004 ◽  
Vol 341 ◽  
pp. 189-197 ◽  
Author(s):  
Matthias Christian Kugler ◽  
Markus Gerhard ◽  
Andreas Schnelzer ◽  
Katja Borzym ◽  
Richard Reinhardt ◽  
...  

BMC Biology ◽  
2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Lingzhao Fang ◽  
Shuli Liu ◽  
Mei Liu ◽  
Xiaolong Kang ◽  
Shudai Lin ◽  
...  

2015 ◽  
Author(s):  
Clara Bodelon ◽  
Micahel Untereiner ◽  
Svetlana Vinokurova ◽  
Mitchell J. Machiela ◽  
Nicolas Wentzensen

2020 ◽  
Vol 48 (11) ◽  
pp. 6157-6169 ◽  
Author(s):  
Elisa Vilardo ◽  
Fabian Amman ◽  
Ursula Toth ◽  
Annika Kotter ◽  
Mark Helm ◽  
...  

Abstract The TRM10 family of methyltransferases is responsible for the N1-methylation of purines at position 9 of tRNAs in Archaea and Eukarya. The human genome encodes three TRM10-type enzymes, of which only the mitochondrial TRMT10C was previously characterized in detail, whereas the functional significance of the two presumably nuclear enzymes TRMT10A and TRMT10B remained unexplained. Here we show that TRMT10A is m1G9-specific and methylates a subset of nuclear-encoded tRNAs, whilst TRMT10B is the first m1A9-specific tRNA methyltransferase found in eukaryotes and is responsible for the modification of a single nuclear-encoded tRNA. Furthermore, we show that the lack of G9 methylation causes a decrease in the steady-state levels of the initiator tRNAiMet-CAT and an alteration in its further post-transcriptional modification. Our work finally clarifies the function of TRMT10A and TRMT10B in vivo and provides evidence that the loss of TRMT10A affects the pool of cytosolic tRNAs required for protein synthesis.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2349-2349 ◽  
Author(s):  
Konstanze Dohner ◽  
Marianne Habdank ◽  
Frank G. Rucker ◽  
Simone Miller ◽  
Stefan Frohling ◽  
...  

Abstract In recent years several groups initiated the molecular characterization of deletion and translocation breakpoints affecting the long arm of chromosome 7 (7q−) to identify genes that are involved in the pathogenesis of myeloid leukemias. Based on these studies a commonly deleted segment (CDS) of approximately 2 Mb in size was identified in chromosomal band 7q22 flanked by the microsatellite markers D7S1503 and D7S1841. Recently, the MLL5 gene (mixed lineage leukemia 5) has been cloned and mapped to the CDS as an interesting candidate gene for chromosome 7q associated leukemias. However, the pathogenic role of MLL5 in myeloid leukemias has not been demonstrated yet. In addition, for the less frequent deletion/translocation breakpoints affecting the distal part of chromosome 7q a 4 to 5 Mb sized CDS was defined encompassing chromosomal bands 7q35 to q36. The heterogeneity of deletion/translocation breakpoints on 7q suggests the existence of more than one disease-related gene. We aimed to identify and characterize translocation and deletion breakpoints in a large series of myeloid leukemias with chromosome 7q aberrations using fluorescence in situ hybridisation (FISH) and array-based comparative genomic hybridization (array CGH). Once, novel hot spot regions were identified, transcriptional map(s) were constructed allowing the identification of candidate genes, expressed sequences or miR-sites. FISH with a physical map of well defined YAC/BAC/PAC clones covering the long arm of chromosome 7 was performed on a series of 105 myeloid leukemias [acute myeloid leukaemia, (AML); myelodysplastic syndrome (MDS); myeloproliferative disorders, (MPD)] exhibiting chromosome 7q aberrations on banding analysis. Selected patients were analysed by array CGH and results were confirmed by hybridisation of the corresponding DNA clones. Transcriptional map(s) were constructed using public databases. While most of the deletions were large encompassing the previously published CDS, we identified a distinct 2 Mb sized CDS in the proximal part of 7q22 that was defined by five patients all exhibiting small deletions. This segment contains several candidate genes including the putative tumor-suppressor genes CUTL1, RASA4, EPO and FBXL13. Interestingly, this CDS is located close to multiple miR-sites, which usually indicate common fragile sites in the human genome. In chromosomal bands 7q35–q36 we localized the breakpoint of an unbalanced translocation from a patient with secondary AML between the markers D7S1925 and D7S1395. This region was recently characterized as a common fragile site in the human genome, named FRA7I. Furthermore, the translocation breakpoint t(3;7)(p13;q35) of a second patient with therapy-related AML was cloned into a 100 kb sized genomic segment located centromeric the CNTNAP2-gene close to the proximal border of the CDS. Our data further indicate the remarkable heterogeneity of deletion and translocation breakpoints on 7q supporting the hypothesis of multiple genes involved in 7q-associated myeloid leukemias. Using techniques such as FISH and array CGH known CDS as well as novel hot spot regions were identified. Transcriptional maps from those regions may serve as important starting points for the identification of pathogenetically relevant genes.


Sign in / Sign up

Export Citation Format

Share Document