Acquisition of Swimming Behavior on Artificial Creature in Virtual Water Environment

Author(s):  
Keita Nakamura ◽  
Ikuo Suzuki ◽  
Masahito Yamamoto ◽  
Masashi Furukawa
2021 ◽  
Author(s):  
Louise Arnal ◽  
Martyn Clark ◽  
Stacey Dumanski ◽  
John Pomeroy

<p>Water is life and so water-related challenges, such as droughts, floods and water quality degradation, affect everyone. Conceptualizing water-related environmental and social problems in novel ways, with engagement between the public and science researchers, may lead to new and more comprehensive solutions to complex problems. A society that makes decisions informed by science and science that approaches problems in a transdisciplinary manner are key elements in finding creative and holistic solutions to the water-related challenges we all face. We believe that art can help co-establish new social norms to help us grasp and tackle water-related challenges in a more holistic manner.</p><p>The Virtual Water Gallery* is a science and art pilot project funded by Global Water Futures (GWF). GWF is a University of Saskatchewan-led research program that is funded in part by the Canada First Research Excellence Fund. Its overarching goal is to deliver risk management solutions, informed by leading-edge water science, to manage water futures in Canada and other cold regions where global warming is changing landscapes, ecosystems and the water environment. Launched in Summer 2020, the Virtual Water Gallery aims to provide a safe, inclusive and collaborative space for fully open discussions between scientists, artists, and a wider public, to explore past, present and future water challenges.</p><p>As part of this pilot project, 13 artists were paired with teams of GWF scientists to co-explore specific water challenges in various Canadian ecoregions and river basins, including the Arctic, the mountains, boreal forests, prairies, farmlands, lakes, rivers, and communities. These collaborations are leading to the co-creation of science and art pieces which will be exhibited online on a Virtual Water Gallery. By making this online exhibition accessible to a global audience, we hope that the co-created art pieces will open creative and informative discussions about urgent water challenges to a wider audience via the gallery space.</p><p>*More information about the Virtual Water Gallery on the GWF webpage: https://gwf.usask.ca/outreach/virtual-water-gallery.php</p>


2020 ◽  
Vol 183 ◽  
pp. 02001
Author(s):  
Ousmane Seidou ◽  
Fatoumata Maiga ◽  
Claudia Ringler ◽  
Spela Kalcic ◽  
Luca Ferrini

The ever-increasing demand for water, food, and energy is putting unsustainable pressure on natural resources worldwide, often leading to environmental degradation that, in turn, affect water, food, and energy security. The recognition of the complex interlinkages between multiple sectors has led to the creation of various holistic approaches to environmental decision making such as Integrated Natural Resources Management (INRM), Integrated Water Resources Management (IWRM), Virtual Water (VW), Water Footprint (WF) and lately the Food-EnergyEnvironment-Water nexus (WE2F). All these approaches aim to increase resource use efficiency and promote sustainability by increasing the cooperation between traditionally disjoint sectors, and mainly differ by the number and relative weights of the sectors included in their framework. They also suffer from the same face and the same barriers for implementation, some of which may never be fully overcome. The paper discusses the benefits of adopting a WE2F nexus approach in the Upper Niger Basin (UNB) and the Inner Niger Delta (IND), but also the multiple difficulties associated with its practical implementation. IWRM/WE2F initiatives in the UNB/IND such as the BAMGIRE project piloted by Wetlands International and funded by the Dutch Embassy in Mali to secure livelihoods and biodiversity in a changing environment, is taken as an example of partial success in the use of a nexus approach to watershed management. It was shown there are multiple barriers to the operational implementation of the WE2F. However, while a full understanding of all interlinkage between sectors may never be possible, data collection, scientific research and model development can improve our ability to understand the complex system in which we live, and hence take better decisions


2016 ◽  
Vol 9 (1) ◽  
pp. 60
Author(s):  
Yongbeom PYEON ◽  
Eunseok YANG ◽  
Shinku KANG ◽  
Kyunghoon LEE
Keyword(s):  

2020 ◽  
Vol 20 (3) ◽  
pp. 325-332
Author(s):  
Le Nhu Da ◽  
Le Thi Phuong Quynh ◽  
Phung Thi Xuan Binh ◽  
Duong Thi Thuy ◽  
Trinh Hoai Thu ◽  
...  

Recently, the Asian rivers have faced the strong reduction of riverine total suspended solids (TSS) flux due to numerous dam/reservoir impoundment. The Red river system is a typical example of the Southeast Asian rivers that has been strongly impacted by reservoir impoundment in both China and Vietnam, especially in the recent period. It is known that the reduction in total suspended solids may lead to the decrease of some associated elements, including nutrients (N, P, Si) which may affect coastal ecosystems. In this paper, we establish the empirical relationship between total suspended solids and total phosphorus concentrations in water environment of the Red river in its downstream section from Hanoi city to the Ba Lat estuary based on the sampling campaigns conducted in the dry and wet seasons in 2017, 2018 and 2019. The results show a clear relationship with significant coefficient between total suspended solids and total phosphorus in the downstream Red river. It is expressed by a simple equation y = 0.0226x0.3867 where x and y stand for total suspended solids and total phosphorus concentrations (mg/l) respectively with the r2 value of 0.757. This equation enables a reasonable prediction of total phosphorus concentrations of the downstream Red river when the observed data of total suspended solids concentrations are available. Thus, this work opens up the way for further studies on the calculation of the total phosphorus over longer timescales using daily available total suspended solids values.


Author(s):  
Sima Ajdar qizi Askerova

Monitoring of sea water condition is one of major requirements for carrying out the reliable ecological control of water environment. Monitoring networks contain such elements as sea buoys, beacons, etc. and are designated for measuringvarious hydrophysical parameters, including salinity of sea water. Development of specialized network and a separate buoy system for measuring thesea water salinity at different depths makes it possible to determine major regularities of processes of pollution and self-recovery of the sea waters. The article describes the scientific and methodological basics for development of this specialized network and questions of its optimal construction. It is well-known that at a depth of 30-45 m of the Caspian Sea salinity decreases and then at a depth of 45-60 m salinity is fully recovered. The mentioned changes of salinity at the relatively upper layer of sea waters is of special interest for studying the effect of ocean-going processes on the climate forming in the Caspian area. In terms of informativeness of measurements of surface waters salinity, the most informative is a layer ata 30-60 m depth, where inversion and recovery of salinity take place. It is shown that in most informative subrange of measurements, i. e. at a depth of 30-60 m optimization of regime of measurements complex should be carried out in order to increase the effectiveness of held researches. It is shown that at a depth of 35-50 m choice of the optimum regime of measurements makes it possible to obtain the maximum amount of information.


2011 ◽  
Vol 10 (6) ◽  
pp. 849-853 ◽  
Author(s):  
Guisen Du ◽  
Huimin Li ◽  
Yumei Wu ◽  
Dianwei Wu ◽  
Jingshi Wang

Author(s):  
Adi Mora Lubis ◽  
Nelly Astuti Hasibuan ◽  
Imam Saputra

Digital imagery is a two-dimensional image process through a digital computer that is used to manipulate and modify images in various ways. Photos are examples of two-dimensional images that can be processed easily. Each photo in the form of a digital image can be processed through a specific software. In the water environment, the light factor greatly influences the results of the quality of the image obtained. With the deepening of underwater shooting, the results obtained will be the darker the quality of the underwater image. . uneven lighting and bluish tones. One of the factors that influence the recognition results in pattern recognition is the quality of the image that is inputted. The image acquired from the source does not always have good quality. The process of repairing digital images that experience interference in lighting. The lighting repair process uses homomorphic filtering and uses contrast striching and will compare the quality of both methods and test to prove the results of image quality between homomorphic filtering and contrast streching. Until later the results of both methods can be seen which is better. homomorphic filtering and contrast stretching can produce image improvements with pretty good performance.Keywords: Digital Image, Underwater Image, Homomorphic Filtering, Contrast Streching, Matlab R2010a


Author(s):  
Bainun Harahap

Digital imagery is a two-dimensional image process through a digital computer that is used to manipulate and modify images in various ways. Photos are examples of two-dimensional images that can be processed easily. Each photo in the form of a digital image can be processed through certain software devices. In the water environment, light factors greatly influence the results of image quality obtained. With the deepening of underwater shooting, the results obtained will be the darker the quality of the underwater image. Underwater imagery is widely used as an object in various activities such as underwater habitat mapping, underwater environment monitoring, underwater object search. Uneven lighting and colors that tend to be bluish and runny. One of the factors that influence the recognition results in pattern recognition is the quality of the image that is inputted. The image acquired from the source does not always have good quality. The process of improvement in digital images that experience interference in lighting and exposure to sunlight. The lighting repair process uses the retinex method and will compare the quality of the two methods later. Until later the results of both methods can be seen which is better. Retinex method can produce image improvement with high performance.Keywords: Digital Cintra, Underwater, Matlab Retinex Method


Sign in / Sign up

Export Citation Format

Share Document