Research on Updating Land Use Database Dynamically by Remote Sensing Monitoring

Author(s):  
Xiuming Jia ◽  
Qiang Li
2013 ◽  
Vol 444-445 ◽  
pp. 869-873
Author(s):  
Shu Gan ◽  
Xi Ping Yuan ◽  
Gang Sun ◽  
Xiao Lun Zhang ◽  
Ying Li

Karst rocky desertification is one of the serious environment problems in southwest of China. In this study, a typical county with karst rocky desertification which located in Southeast of Yunnan province is selected as a work area at first. Based on the datum collection about land use status and field verification surveying in study area, the technique of remote sensing image processing and GIS spatial analysis was integrated used to monitor the karst rocky desertification status and got its information in different degree. Analysis for karst rocky desertification spatial distributing, the main result is that there is more amount proportion of karst rocky desertification land cover in case study area and these large numbers patches of karst rocky desertification mosaic beset in the different land use types, such as forest, plantation and artificial town or other infrastructure building. So it is stringent need to deepen research the karst rocky desertification development and its spatial expand. Another result include that remote sensing monitoring for the karst rocky desertification is one of the important advance technique method, but it also need to fuse more another assistant information according to the actual condition in case study area, for example, the land use status in quo is a good means to assistant remote sensing monitoring karst rocky desertification by spatial restrict effect.


Author(s):  
Wen Song ◽  
Wei Song ◽  
Haihong Gu ◽  
Fuping Li

Based on the results of an extensive literature research, we summarize the research progress of remote sensing monitoring in terms of identifying mining area boundaries and monitoring land use or land cover changes of mining areas. We also analyze the application of remote sensing in monitoring the biodiversity, landscape structure, vegetation change, soil environment, surface runoff conditions, and the atmospheric environment in mining areas and predict the prospects of remote sensing in monitoring the ecological environment in mining areas. Based on the results, the accurate classification of land use or land cover and the accurate extraction of environmental factors are the basis for remote sensing monitoring of the ecological environment in mining areas. In terms of the extraction of ecological factors, vegetation extraction is relatively advanced in contrast to the extraction of animal and microbial data. For the monitoring of environmental conditions of mining areas, sophisticated methods are available to identify pollution levels of vegetation and to accurately monitor soil quality. However, the methods for water and air pollution monitoring in mining areas still need to be improved. These limitations considerably impede the application of remote sensing monitoring in mining areas. The solving of these problems depends on the progress of multi-source remote sensing data and stereoscopic monitoring techniques.


2021 ◽  
Vol 13 (15) ◽  
pp. 2949
Author(s):  
Tianyi Cai ◽  
Xinhuan Zhang ◽  
Fuqiang Xia ◽  
Zhiping Zhang ◽  
Jingjing Yin ◽  
...  

The center of gravity of China’s new cropland has shifted from Northeast China to the Xinjiang oasis areas where the ecological environment is relatively fragile. However, we currently face a lack of a comprehensive review of the cropland expansion in oasis areas of Xinjiang, which is importantly associated with the sustainable use of cropland, social stability and oasis ecological security. In this study, the land use remote sensing monitoring data in 1990, 2000, 2010 and 2018 were used to comprehensively analyze the process characteristics, different modes and driving mechanisms of the cropland expansion in Xinjiang, as well as its spatial heterogeneity at the oasis area level. The results revealed that cropland in Xinjiang continued to expand from 5803 thousand hectares in 1990 to 8939 thousand hectares in 2018 and experienced three stages of expansion: steady expansion, rapid expansion, and slow expansion. The center of gravity of cropland showed the characteristic of shifting to the South. Edge expansion and encroachment on grassland were the dominant spatial pattern mode and land use conversion mode of Xinjiang’s cropland expansion, respectively. The expansion of cropland in Xinjiang was affected by multiple factors. Irrigation conditions played a dominant role. Topography indirectly affected cropland expansion by affecting the suitability of agricultural production and development. Population growth and farmers’ income were important driving forces. There was significant spatial heterogeneity in the intensity, mode and driving force of cropland expansion among different oasis areas in Xinjiang. The spatial shift of China’s new cropland has occupied a large amount of water resources and ecological land in Xinjiang and exacerbated the vulnerability of the ecosystem in arid regions. The key to sustainable management of cropland in Xinjiang in the future lies in maintaining an appropriate scale of cropland and promoting the coordinated development of cropland, population, water resources and industry.


Author(s):  
H. Lilienthal ◽  
A. Brauer ◽  
K. Betteridge ◽  
E. Schnug

Conversion of native vegetation into farmed grassland in the Lake Taupo catchment commenced in the late 1950s. The lake's iconic value is being threatened by the slow decline in lake water quality that has become apparent since the 1970s. Keywords: satellite remote sensing, nitrate leaching, land use change, livestock farming, land management


Sign in / Sign up

Export Citation Format

Share Document