Separation of Gear and Bearing Fault Signals from a Wind Turbine Transmission under Varying Speed and Load

Author(s):  
Robert B. Randall ◽  
Nader Sawalhi ◽  
Michael Coats
Keyword(s):  
Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1474 ◽  
Author(s):  
Francesco Castellani ◽  
Luigi Garibaldi ◽  
Alessandro Paolo Daga ◽  
Davide Astolfi ◽  
Francesco Natili

Condition monitoring of gear-based mechanical systems in non-stationary operation conditions is in general very challenging. This issue is particularly important for wind energy technology because most of the modern wind turbines are geared and gearbox damages account for at least the 20% of their unavailability time. In this work, a new method for the diagnosis of drive-train bearings damages is proposed: the general idea is that vibrations are measured at the tower instead of at the gearbox. This implies that measurements can be performed without impacting the wind turbine operation. The test case considered in this work is a wind farm owned by the Renvico company, featuring six wind turbines with 2 MW of rated power each. A measurement campaign has been conducted in winter 2019 and vibration measurements have been acquired at five wind turbines in the farm. The rationale for this choice is that, when the measurements have been acquired, three wind turbines were healthy, one wind turbine had recently recovered from a planetary bearing fault, and one wind turbine was undergoing a high speed shaft bearing fault. The healthy wind turbines are selected as references and the damaged and recovered are selected as targets: vibration measurements are processed through a multivariate Novelty Detection algorithm in the feature space, with the objective of distinguishing the target wind turbines with respect to the reference ones. The application of this algorithm is justified by univariate statistical tests on the selected time-domain features and by a visual inspection of the data set via Principal Component Analysis. Finally, a novelty index based on the Mahalanobis distance is used to detect the anomalous conditions at the damaged wind turbine. The main result of the study is that the statistical novelty of the damaged wind turbine data set arises clearly, and this supports that the proposed measurement and processing methods are promising for wind turbine condition monitoring.


Measurement ◽  
2015 ◽  
Vol 74 ◽  
pp. 70-77 ◽  
Author(s):  
W.Y. Liu ◽  
Q.W. Gao ◽  
G. Ye ◽  
R. Ma ◽  
X.N. Lu ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6348
Author(s):  
Chao Zhang ◽  
Haoran Duan ◽  
Yu Xue ◽  
Biao Zhang ◽  
Bin Fan ◽  
...  

As the critical parts of wind turbines, rolling bearings are prone to faults due to the extreme operating conditions. To avoid the influence of the faults on wind turbine performance and asset damages, many methods have been developed to monitor the health of bearings by accurately analyzing their vibration signals. Stochastic resonance (SR)-based signal enhancement is one of effective methods to extract the characteristic frequencies of weak fault signals. This paper constructs a new SR model, which is established based on the joint properties of both Power Function Type Single-Well and Woods-Saxon (PWS), and used to make fault frequency easy to detect. However, the collected vibration signals usually contain strong noise interference, which leads to poor effect when using the SR analysis method alone. Therefore, this paper combines the Fourier Decomposition Method (FDM) and SR to improve the detection accuracy of bearing fault signals feature. Here, the FDM is an alternative method of empirical mode decomposition (EMD), which is widely used in nonlinear signal analysis to eliminate the interference of low-frequency coupled signals. In this paper, a new stochastic resonance model (PWS) is constructed and combined with FDM to enhance the vibration signals of the input and output shaft of the wind turbine gearbox bearing, make the bearing fault signals can be easily detected. The results show that the combination of the two methods can detect the frequency of a bearing failure, thereby reminding maintenance personnel to urgently develop a maintenance plan.


Sign in / Sign up

Export Citation Format

Share Document