Intuitive Humanoid Robot Operating System Based on Recognition and Variation of Human Body Motion

Author(s):  
Yuya Hirose ◽  
Shohei Kato
2021 ◽  
Vol 13 (1) ◽  
pp. 68-77
Author(s):  
Susanto Susanto ◽  
Junito Suroto ◽  
Riska Analia

A collaborative robot such as humanoid robot which able to play soccer consist tons of software framework such as servo controller, vision system, strategy receiver and transmitter, sensors, and coordination system. All these frameworks needed to be integrated to simplify the command of creating the complexity of the robot behaviors. To overcome these problems, the Robot Operating System (ROS) can be implemented on each robot. This paper presented the implementation of the ROS: Kinetic Kame in order to integrated the whole framework which is existed in the robot. To verify the performance of this system, some experiments has been done in real-time application. From the experimental results, the ROS: Kinetic Kame able to integrate each software framework of the robot in very good response.


2018 ◽  
Author(s):  
Yi Chen ◽  
Sagar Manglani ◽  
Roberto Merco ◽  
Drew Bolduc

In this paper, we discuss several of major robot/vehicle platforms available and demonstrate the implementation of autonomous techniques on one such platform, the F1/10. Robot Operating System was chosen for its existing collection of software tools, libraries, and simulation environment. We build on the available information for the F1/10 vehicle and illustrate key tools that will help achieve properly functioning hardware. We provide methods to build algorithms and give examples of deploying these algorithms to complete autonomous driving tasks and build 2D maps using SLAM. Finally, we discuss the results of our findings and how they can be improved.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1369
Author(s):  
Hyojun Lee ◽  
Jiyoung Yoon ◽  
Min-Seong Jang ◽  
Kyung-Joon Park

To perform advanced operations with unmanned aerial vehicles (UAVs), it is crucial that components other than the existing ones such as flight controller, network devices, and ground control station (GCS) are also used. The inevitable addition of hardware and software to accomplish UAV operations may lead to security vulnerabilities through various vectors. Hence, we propose a security framework in this study to improve the security of an unmanned aerial system (UAS). The proposed framework operates in the robot operating system (ROS) and is designed to focus on several perspectives, such as overhead arising from additional security elements and security issues essential for flight missions. The UAS is operated in a nonnative and native ROS environment. The performance of the proposed framework in both environments is verified through experiments.


2013 ◽  
Author(s):  
Yuichiro Hirose ◽  
Mitsuru Enomoto ◽  
Takashi Sasaki ◽  
Eiichi Yasuda ◽  
Masatoshi Hada

Author(s):  
A. V. Satyanarayana ◽  
K. Hareesh Kumar ◽  
Jeevana Jyothi Pujari ◽  
Chitturi Prasad ◽  
Sunkari Venkata Ramakrishna ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document