Semantic Retrieval of Geospatial Datasets Based on a Semantic Repository

Author(s):  
Julio Vizcarra ◽  
Miguel Torres ◽  
Rolando Quintero
2014 ◽  
Vol 28 (3) ◽  
pp. 148-161 ◽  
Author(s):  
David Friedman ◽  
Ray Johnson

A cardinal feature of aging is a decline in episodic memory (EM). Nevertheless, there is evidence that some older adults may be able to “compensate” for failures in recollection-based processing by recruiting brain regions and cognitive processes not normally recruited by the young. We review the evidence suggesting that age-related declines in EM performance and recollection-related brain activity (left-parietal EM effect; LPEM) are due to altered processing at encoding. We describe results from our laboratory on differences in encoding- and retrieval-related activity between young and older adults. We then show that, relative to the young, in older adults brain activity at encoding is reduced over a brain region believed to be crucial for successful semantic elaboration in a 400–1,400-ms interval (left inferior prefrontal cortex, LIPFC; Johnson, Nessler, & Friedman, 2013 ; Nessler, Friedman, Johnson, & Bersick, 2007 ; Nessler, Johnson, Bersick, & Friedman, 2006 ). This reduced brain activity is associated with diminished subsequent recognition-memory performance and the LPEM at retrieval. We provide evidence for this premise by demonstrating that disrupting encoding-related processes during this 400–1,400-ms interval in young adults affords causal support for the hypothesis that the reduction over LIPFC during encoding produces the hallmarks of an age-related EM deficit: normal semantic retrieval at encoding, reduced subsequent episodic recognition accuracy, free recall, and the LPEM. Finally, we show that the reduced LPEM in young adults is associated with “additional” brain activity over similar brain areas as those activated when older adults show deficient retrieval. Hence, rather than supporting the compensation hypothesis, these data are more consistent with the scaffolding hypothesis, in which the recruitment of additional cognitive processes is an adaptive response across the life span in the face of momentary increases in task demand due to poorly-encoded episodic memories.


2017 ◽  
pp. 030-050
Author(s):  
J.V. Rogushina ◽  

Problems associated with the improve ment of information retrieval for open environment are considered and the need for it’s semantization is grounded. Thecurrent state and prospects of development of semantic search engines that are focused on the Web information resources processing are analysed, the criteria for the classification of such systems are reviewed. In this analysis the significant attention is paid to the semantic search use of ontologies that contain knowledge about the subject area and the search users. The sources of ontological knowledge and methods of their processing for the improvement of the search procedures are considered. Examples of semantic search systems that use structured query languages (eg, SPARQL), lists of keywords and queries in natural language are proposed. Such criteria for the classification of semantic search engines like architecture, coupling, transparency, user context, modification requests, ontology structure, etc. are considered. Different ways of support of semantic and otology based modification of user queries that improve the completeness and accuracy of the search are analyzed. On base of analysis of the properties of existing semantic search engines in terms of these criteria, the areas for further improvement of these systems are selected: the development of metasearch systems, semantic modification of user requests, the determination of an user-acceptable transparency level of the search procedures, flexibility of domain knowledge management tools, increasing productivity and scalability. In addition, the development of means of semantic Web search needs in use of some external knowledge base which contains knowledge about the domain of user information needs, and in providing the users with the ability to independent selection of knowledge that is used in the search process. There is necessary to take into account the history of user interaction with the retrieval system and the search context for personalization of the query results and their ordering in accordance with the user information needs. All these aspects were taken into account in the design and implementation of semantic search engine "MAIPS" that is based on an ontological model of users and resources cooperation into the Web.


2021 ◽  
Vol 10 (1) ◽  
pp. 30
Author(s):  
Alfonso Quarati ◽  
Monica De Martino ◽  
Sergio Rosim

The Open Government Data portals (OGD), thanks to the presence of thousands of geo-referenced datasets, containing spatial information are of extreme interest for any analysis or process relating to the territory. For this to happen, users must be enabled to access these datasets and reuse them. An element often considered as hindering the full dissemination of OGD data is the quality of their metadata. Starting from an experimental investigation conducted on over 160,000 geospatial datasets belonging to six national and international OGD portals, this work has as its first objective to provide an overview of the usage of these portals measured in terms of datasets views and downloads. Furthermore, to assess the possible influence of the quality of the metadata on the use of geospatial datasets, an assessment of the metadata for each dataset was carried out, and the correlation between these two variables was measured. The results obtained showed a significant underutilization of geospatial datasets and a generally poor quality of their metadata. In addition, a weak correlation was found between the use and quality of the metadata, not such as to assert with certainty that the latter is a determining factor of the former.


Drones ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 20
Author(s):  
Joseph P. Hupy ◽  
Cyril O. Wilson

Soil erosion monitoring is a pivotal exercise at macro through micro landscape levels, which directly informs environmental management at diverse spatial and temporal scales. The monitoring of soil erosion can be an arduous task when completed through ground-based surveys and there are uncertainties associated with the use of large-scale medium resolution image-based digital elevation models for estimating erosion rates. LiDAR derived elevation models have proven effective in modeling erosion, but such data proves costly to obtain, process, and analyze. The proliferation of images and other geospatial datasets generated by unmanned aerial systems (UAS) is increasingly able to reveal additional nuances that traditional geospatial datasets were not able to obtain due to the former’s higher spatial resolution. This study evaluated the efficacy of a UAS derived digital terrain model (DTM) to estimate surface flow and sediment loading in a fluvial aggregate excavation operation in Waukesha County, Wisconsin. A nested scale distributed hydrologic flow and sediment loading model was constructed for the UAS point cloud derived DTM. To evaluate the effectiveness of flow and sediment loading generated by the UAS point cloud derived DTM, a LiDAR derived DTM was used for comparison in consonance with several statistical measures of model efficiency. Results demonstrate that the UAS derived DTM can be used in modeling flow and sediment erosion estimation across space in the absence of a LiDAR-based derived DTM.


Sign in / Sign up

Export Citation Format

Share Document